Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)
---
\(T=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Rightarrow2T=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^8-1\right)\left(3^8+1\right)=3^{16}-1\)
\(\Rightarrow T=\dfrac{3^{16}-1}{2}=21523360\)
bạn ơi bạn viết rõ bài P dc k o mình đọc chả hiểu j
a: \(=6\sqrt{2}-12\sqrt{3}-10\sqrt{2}+12\sqrt{3}=-4\sqrt{2}\)
b: \(=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\sqrt{4-3}=1\)
Đề đúng: \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
ĐK: \(x\ge\frac{5}{2}\)
Pt trên tương đương: \(\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5+2\sqrt{2x-5}+1}=4\)
<=>\(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
<=>\(\sqrt{2x-5}+3+\sqrt{2x-5}+1=4\)
<=>\(2\sqrt{2x-5}=0\Leftrightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\left(\text{nhận}\right)\)
Vậy S={5/2}
=\(5\sqrt{5}\) nha!