Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4\left(a-3\right)^2}\)
\(=\sqrt{4\left(a^2-6a+9\right)}\)
\(=\sqrt{4a^2-24a+36}\)
\(=\sqrt{\left(2a-6\right)^2}\)
\(=\left|2a-6\right|\)
\(=2a-6\)
a) \(\sqrt{\left(3-6a\right)^2}=6a-3\)
( vì \(a\ge\frac{1}{2}\)\(\Rightarrow3-6a< 0\))
\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
\(\Rightarrow A=\sqrt{\left(2+x\right)^{^{ }3}}-\sqrt{\left(2-x\right)^3}=\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)\)
\(\Rightarrow A=\dfrac{\sqrt{4+2\sqrt{4-x^2}}\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)}{\sqrt{2}\left(4+\sqrt{4-x^2}\right)}\)
\(\Rightarrow A=\dfrac{\left(\sqrt{2+x}+\sqrt{2-x}\right)\left(\sqrt{2+x}-\sqrt{2-x}\right)}{\sqrt{2}}=2\sqrt{2}\)
Rút gọn bt:
Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)
b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư
Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Tìm ĐKXĐ . Rút gọn P
B, Tìm x nguyên để P có gt nguyên
c, Tìm GTNN của P với a >1
Câu 3: Giair các pt
a, \(\sqrt{\left(2x-1\right)^2}=4\)
b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)
\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)
Chúc bạn học tốt ~
\(\sqrt{4\left(a-3\right)^2}\)
\(=\sqrt{2^2\left(a-3\right)^2}\)
\(=2\left(a-3\right)\)
\(=2a-6\)
\(\sqrt{4\left(a-3\right)^2}=\sqrt{\left[2\left(a-3\right)\right]^2}=2\left(a-3\right)\)3)