\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2023

474+7+7=2(474+7+7)2=8278+27+142=727+17+27+1+142=(71)2(7+1)2+142=717+1+142=7171+142=1422=2(72)2=72

AH
Akai Haruma
Giáo viên
30 tháng 5 2023

Lời giải:
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{\frac{8-2\sqrt{7}}{2}}-\sqrt{\frac{8+2\sqrt{7}}{2}}=\sqrt{\frac{(\sqrt{7}-1)^2}{2}}-\sqrt{\frac{(\sqrt{7}+1)^2}{2}}\)

\(=\frac{|\sqrt{7}-1|}{\sqrt{2}}-\frac{|\sqrt{7}+1|}{\sqrt{2}}=\frac{\sqrt{7}-1-(\sqrt{7}+1)}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

7 tháng 9 2016

a)\(\sqrt{1-2\sqrt{10}+10}=\sqrt{\left(1-\sqrt{10}\right)^2}=\left|1-\sqrt{10}\right|=\sqrt{10}-1\)
(vì 1<\(\sqrt{10}\))

b)\(\Rightarrow\sqrt{2}\left[\left(\sqrt{4-\sqrt{7}}\right)-\left(\sqrt{4+\sqrt{7}}\right)\right]=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+\sqrt{7}\right)^2}=\sqrt{7}-1-1-\sqrt{7}=-2\Rightarrow\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

30 tháng 10 2018

\(B=\frac{1}{\sqrt{5}+\sqrt{7}}-\frac{1}{\sqrt{5}-\sqrt{7}}=\frac{\sqrt{5}-\sqrt{7}-\sqrt{5}-\sqrt{7}}{5-7}=\frac{-2\sqrt{7}}{-2}=\sqrt{7}\)

\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}=\sqrt{\left(\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)^2}\)

\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}+2\sqrt{\frac{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}}+\frac{4-\sqrt{7}}{4+\sqrt{7}}}\)

\(C=\sqrt{\frac{\left(4+\sqrt{7}\right)^2}{16-7}+\frac{\left(4-\sqrt{7}\right)^2}{16-7}+2}\)

\(C=\sqrt{\frac{\left(4+\sqrt{7}+4-\sqrt{7}\right)^2-2\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{16-7}+2}\)

\(C=\sqrt{\frac{16^2-2\left(16-7\right)}{9}+2}=\sqrt{\frac{238}{9}+2}=\sqrt{\frac{256}{9}}=\frac{16}{3}\)

Chúc bạn học tốt ~ 

30 tháng 10 2018

thanks ban 

9 tháng 6 2019

a) \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(A^2=\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2\)

\(A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(A^2=6+2\sqrt{3^2-5}\)

\(A^2=6+4\)

\(A^2=10\)

\(\Rightarrow\orbr{\begin{cases}A=10\\A=-10\end{cases}}\)

Mà \(A>0\Rightarrow A=10\)

b) \(B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(B^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)

\(B^2=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)

\(B^2=8-2\sqrt{4^2-7}\)

\(B^2=8-6\)

\(B^2=2\)

\(\Rightarrow\orbr{\begin{cases}B=2\\B=-2\end{cases}}\)

Mà \(B< 0\Rightarrow B=-2\)

9 tháng 6 2019

Cách khác :

b) \(4-\sqrt{7}=\frac{8-2\sqrt{7}}{2}=\frac{7-2\sqrt{7}+1}{2}=\left(\frac{\sqrt{7}-1}{\sqrt{2}}\right)^2\)

\(4+\sqrt{7}=\frac{8+2\sqrt{7}}{2}=\frac{7+2\sqrt{7}+1}{2}=\left(\frac{\sqrt{7}+1}{\sqrt{2}}\right)^2\)

do đó : \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{\left(\frac{\sqrt{7}-1}{\sqrt{2}}\right)^2}-\sqrt{\left(\frac{\sqrt{7}+1}{\sqrt{2}}\right)^2}=\frac{\sqrt{7}-1}{\sqrt{2}}-\frac{\sqrt{7}+1}{\sqrt{2}}=-\sqrt{2}\)

tương tự câu a.

a) \(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\sqrt{4-3}=\sqrt{1}=1\)

b)

Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)

\(=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=8-6=2\)

\(\Rightarrow B=\sqrt{2}\)

22 tháng 7 2016

a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(\sqrt{7}+1-\sqrt{7}+1=2\)

=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)

b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

             =  \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)

\(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)

=>  B=\(\sqrt{5}+1\)

c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)

=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)

                 =  \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

                =  \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)\(2\sqrt{5}\)

=> A=\(\sqrt{5}\)

Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(A-\sqrt{6-2\sqrt{5}}\)

\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1

22 tháng 7 2016

Phần a) chỗ cuối viết thiếu dấu =.

Sẽ là A=\(\sqrt{2}\)nha

28 tháng 10 2020

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)

\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)

b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)

\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)

\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)

18 tháng 5 2019

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)

\(\Leftrightarrow A=0\)