Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1=1\)
\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
= 1
\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\times\sqrt{3+\sqrt{5}}\times\sqrt{2}\left(\sqrt{5}-1\right)\)
\(=\sqrt{9-5}\times\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}\left(\sqrt{5}-1\right)\)
\(=2\left(5-1\right)\)
= 8
a) \(A=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{5}-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}\)
\(=\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}\)
\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)
\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)\)
\(=\sqrt{5}-\sqrt{5}+1\)
\(=1\)
b) \(B=\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{3-\sqrt{5}}\left(3\sqrt{10}+\sqrt{50}-3\sqrt{2}-\sqrt{10}\right)\)
\(=\sqrt{3-\sqrt{5}}\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)
\(=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)
\(=\sqrt{3-\sqrt{5}}\sqrt{\left(2\sqrt{10}+2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(2\sqrt{10}+2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(4\cdot10+8\sqrt{20}+4\cdot2\right)}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(40+16\sqrt{5}+8\right)}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(48+16\sqrt{5}\right)}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\cdot16\left(3+\sqrt{5}\right)}\)
\(=\sqrt{\left(9-5\right)\cdot16}\)
\(=\sqrt{4\cdot16}\)
\(=\sqrt{64}\)
\(=8\)
a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)
b) Tương tự a) đ/s =5
\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2}+4\sqrt{2}+1^2}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1^2}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1^2}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{5^2+2.5.3\sqrt{2}+\left(3+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(5+3+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(5+6\right)}=\sqrt{11}\)
\(=5+6=11\)
Bạn rút từ trong căn trước:
căn của 29-12 căn 5 ta biến đổi thành:
(2 căn 5 ) bình- 2.2 căn 5. 3 + 9
= ( 2 căn 5 -3 )2
rút gọn rồi ta sẽ ra kết quả
=\(\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}\)
=\(\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
=\(\sqrt{5}-\sqrt{3-l2\sqrt{5}-3l}\)
=\(\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)(vi \(2\sqrt{5}-3\)>0)
=\(\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
=\(\sqrt{5}-\sqrt{5-2\sqrt{5}+1}\)
=\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
=\(\sqrt{5}-l\sqrt{5}-1l\)
=\(\sqrt{5}-\sqrt{5}+1\)(vi \(\sqrt{5}-1\)>0)
=1