K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

\(1/\)

Để \(\frac{21n+4}{14n+3}\)là phân số tối giản

Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)

Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)

Ta có:

\(21n+4⋮a\)

\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)

\(14n+3⋮a\)

\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)

Từ (1) và (2) suy ra:

\((42n+9)-(42n+8)⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\inƯ\left(1\right)\)

\(\Rightarrow a=1\)hoặc\(a=-1\)

\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản

25 tháng 4 2018

\(2/\)

\(x^2+2x+2=x^2+x+x+1+1\)

\(=x\left(x+1\right)+\left(x+1\right)+1\)

\(=\left(x+1\right)\left(x+1\right)+1=\left(x+1^2\right)+1>0\)

Vậy đa thức \(x^2+2x+2\)không có nghiệm

30 tháng 5 2020

a) \(3^n+3^{n+2}=3^n.\left(1+3^2\right)=3^n.\left(1+9\right)=10.3^n\)

b) \(1,5.2^n-2^{n-1}=1,5.2^{1+n-1}-2^{n-1}=1,5.2.2^{n-1}-2^{n-1}\)

\(=3.2^{n-1}-2^{n-1}=2^{n-1}.\left(3-1\right)=2^{n-1}.2=2^n\)

18 tháng 6 2020

Cảm ơn bạn nhiều lắm!!!

22 tháng 10 2020

A) \(\left(\frac{1}{3}\right)^{^2}.\frac{1}{3}.9^2=3=3^1\)(viết dưới dạng lũy thừa)

B)\(8< 2^n< 2.16\)

\(2^3< 2^n< 2.2^4\)

\(2^3< 2^n< 2^5\)

\(\Rightarrow3< n< 5\)

mà n là số tự nhiên => n = 4

C) |-x| = 1 => |x| = 1 => x = -1 hoặc x = 1.

|2x| = 6.7 + (-3,3) - 0.4 = 42 - 3,3 - 0 = 42 - 3,3 = 38,7

=> 2x = 38,7 hoặc 2x = -38,7

=> x = 19,35 hoặc x = -19,35

11 tháng 3 2016

3^(n+2) - 3^(n+1)-6x3^n= 3^n x 3^2 - 3^n x 3 - 6x3^n = 3^n x (3-2+6) =3^n x 7  ( câu b tương tự )