Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)
\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)
\(\Leftrightarrow A=\frac{x+2}{x-1}\)
b) Thay x = \(\frac{2}{5}\)vào A ta được :
\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)
c) Để \(A=\frac{5}{4}\)
\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)
\(\Leftrightarrow4x+8=5x-5\)
\(\Leftrightarrow x=13\)
d) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)
\(\Leftrightarrow2x+4-x+1>0\)
\(\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
Bài 2 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)
\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)
\(\Leftrightarrow A=\frac{2x-1}{x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow\frac{2x-1}{x+1}=1\)
\(\Leftrightarrow2x-1=x+1\)
\(\Leftrightarrow x=2\)
b) Để \(A< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)
\(\Leftrightarrow2x-1-2x-1< 0\)
\(\Leftrightarrow-2< 0\)(luôn đúng)
Vậy A < 2 <=> mọi x
\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)
\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)
\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)
\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)
b, Khi x = -4
\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)
Hướng dẫn giải:
a) A = 3x + 2 + |5x|
=> A = 3x + 2 + 5x khi x ≥ 0
A = 3x + 2 - 5x khi x < 0
Vậy A = 8x + 2 khi x ≥ 0
A = -2x + 2 khi x < 0
b) B = 4x - 2x + 12 khi x ≥ 0
B = -4x -2x + 12 khi x < 0
Vậy B = 2x + 12 khi x ≥ 0
B = -6x khi x < 0
c) Với x > 5 => x - 4 > 1 hay x - 4 dương nên
C = x - 4 - 2x + 12 = -x + 8
Vậy với x > 5 thì C = -x + 8
d) D= 3x + 2 + x+ 5 khi x + 5 ≥ 0
D = 3x + 2 - (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
D = 2x - 3 khi x < -5
Hướng dẫn giải:
a) A = 3x + 2 + |5x|
=> A = 3x + 2 + 5x khi x ≥ 0
A = 3x + 2 - 5x khi x < 0
Vậy A = 8x + 2 khi x ≥ 0
A = -2x + 2 khi x < 0
b) B = 4x - 2x + 12 khi x ≥ 0
B = -4x -2x + 12 khi x < 0
Vậy B = 2x + 12 khi x ≥ 0
B = -6x khi x < 0
c) Với x > 5 => x - 4 > 1 hay x - 4 dương nên
C = x - 4 - 2x + 12 = -x + 8
Vậy với x > 5 thì C = -x + 8
d) D= 3x + 2 + x+ 5 khi x + 5 ≥ 0
D = 3x + 2 - (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
D = 2x - 3 khi x < -5
a) Ta có : A = 3x + 2 + |5x|
+ x ≥ 0 thì A = 3x + 2 + 5x
=> A = 8x + 2
+ x < 0 thì A = 3x + 2 - 5x
=> A = 2 - 2x
Ta có : A=3x+2 + |5x|
\(x\ge0\) thì A = 3x+2+5x
=>A=8x+2
x<0 thì A=3x+2-5x
=>A=2-2x
a) A = 3x + 2 + |5x|
=> A = 3x + 2 + 5x khi x ≥ 0
A = 3x + 2 - 5x khi x < 0
Vậy A = 8x + 2 khi x ≥ 0
A = -2x + 2 khi x < 0
b) B = 4x - 2x + 12 khi x ≥ 0
B = -4x -2x + 12 khi x < 0
Vậy B = 2x + 12 khi x ≥ 0
B = -6x khi x < 0