\(x\ge0\),\(x\ne9\),
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2019

ĐKXĐ: ...

\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\frac{25-x+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}+5}-\frac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\frac{25-x+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}\right)\)

\(=\frac{-5}{\left(\sqrt{x}+5\right)}.\frac{\left(\sqrt{x}+5\right)}{-\left(\sqrt{x}+3\right)}=\frac{5}{\sqrt{x}+3}\)

b/ \(B=\frac{x+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

\(\Rightarrow B\ge2\sqrt{\frac{\left(\sqrt{x}+3\right).25}{\sqrt{x}+3}}-6=4\)

\(B_{min}=4\) khi \(\left(\sqrt{x}+3\right)^2=25\Rightarrow x=4\)

7 tháng 7 2017

a. P=\(\frac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}:\frac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\cdot\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}:\frac{-x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}.\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{5}{\sqrt{x}+3}\)

b. P=\(\frac{5}{\sqrt{x}+3}\)

P nguyên \(\Leftrightarrow\sqrt{x}+3\inƯ\left(5\right)\Rightarrow\sqrt{x}+3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2\right\}\)\(\Rightarrow x=4\)

Vậy x=4 thì P nguyên  

4 tháng 7 2018

con ma

5 tháng 2 2021

học lớp 9 chưa mà đòi đăng ? :))

a) Ta có : \(A=\frac{x+5\sqrt{x}}{x-25}=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}}{\sqrt{x}-5}\)

Để A nhận giá trị = 0 thì \(\sqrt{x}=0\)<=> x = 0 ( tmđk )

Vậy với x = 0 thì A = 0

b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)

c) P = B : A = \(\frac{\frac{\sqrt{x}}{\sqrt{x}+3}}{\frac{\sqrt{x}}{\sqrt{x}-5}}=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{\sqrt{x}}{\sqrt{x}+3}\times\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

Xét hiệu P - 1 ta có :

\(\frac{\sqrt{x}-5}{\sqrt{x}+3}-1=\frac{\sqrt{x}-5}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\frac{-8}{\sqrt{x}+3}\)

Vì \(\hept{\begin{cases}-8< 0\\\sqrt{x}+3>0\end{cases}}\Rightarrow\frac{-8}{\sqrt{x}+3}< 0\)hay P - 1 < 0

=> P < 1 

DD
5 tháng 2 2021

a) \(A=0\Rightarrow\frac{x+5\sqrt{x}}{x-25}=0\Rightarrow x+5\sqrt{x}=0\Leftrightarrow x=0\)(thỏa mãn).

b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)

\(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{\sqrt{x}}{\sqrt{x}+3}\)

c) \(P=B\div A=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}< 1\)

19 tháng 5 2021

a, Ta có : \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}=4\)

Thay x = 4 => \(\sqrt{x}=2\) vào B ta được : 

\(B=\frac{2+5}{2-3}=-7\)

19 tháng 5 2021

b, Ta có : Với \(x\ge0;x\ne9\)

\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13-\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}=\frac{x-25}{x-9}\)

Lại có \(P=\frac{A}{B}\Rightarrow P=\frac{\frac{x-25}{x-9}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)