Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi đề bài có điều kiện a, b, c không vậy. Hay là a, b, c bất kì?
a). \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)
\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\)
ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC
Đặt \(a+b=x\) , \(ab=y\)
Ta có biểu thức cần rút gọn :
\(\frac{1}{x^3}.\frac{x\left(x^2-3y\right)}{y^3}+\frac{3}{x^4}.\frac{x^2-2y}{y^2}+\frac{6}{x^5}.\frac{x}{y}=\frac{x^4-3x^2y+3yx^2-6y^2+6y^2}{x^4y^3}=\frac{x^4}{x^4y^3}=\frac{1}{y^3}=\frac{1}{a^3b^3}\)
a ) \(A=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{5-3}\)
\(=\frac{-2\sqrt{3}}{2}\)
\(=-\sqrt{3}\)
c ) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
\(=\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{\sqrt{3}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+1\right)+\left(2+\sqrt{3}\right)\left(\sqrt{3}+1\right)-2\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)
\(=\frac{2\sqrt{3}+4}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)
\(=\frac{2\left(\sqrt{3}+2\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)
\(=\frac{2.\sqrt{3}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3.\left(3-1\right)}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{3}\)
\(=\frac{3-\sqrt{3}}{3}\)
\(=1-\frac{\sqrt{3}}{3}\)
\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)
\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)
\(\Leftrightarrow C=-3\)
a, = \(\sqrt{a^2b^2.\left(1+\frac{1}{a^2b^2}\right)}\) = \(\sqrt{a^2b^2+1}\)
c, = \(\sqrt{\frac{a+ab}{b^4}}\) = \(\frac{\sqrt{a+ab}}{b^2}\)
k mk nha
a, \(ab\sqrt{1+\frac{1}{a^2b^2}}\)
\(ab\sqrt{1+\frac{1}{a^2b^2}}=ab\sqrt{\frac{1+a^2b^2}{a^2b^2}}=\frac{ab}{\left|ab\right|}\sqrt{1+a^2b^2}\)
\(=\hept{\begin{cases}\sqrt{1+a^2b^2}ĐK:ab>0\\-\sqrt{1+a^2b^2}ĐKab< 0\end{cases}}\)
b, \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}\)
\(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a+ab}{b^4}}=\frac{1}{b^2}\sqrt{a+ab}\)