\(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

\(B=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\)

\(2B=2\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\right)\)

\(2B=2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{200}{2^{199}}\)

\(2B-B=\left(2+\frac{3}{2^2}+...+\frac{200}{2^{199}}\right)-\left(1+\frac{3}{2^3}+...+\frac{200}{2^{200}}\right)\)

.... đặt A=... giiả tiếp

2 tháng 1 2016

a, Dat A =\(\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...-\frac{1}{3^{198}}+\frac{1}{3^{199}}\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{199}}+\frac{1}{3^{200}}\)

\(\Rightarrow\frac{1}{3}A+A=\left(\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{199}}+\frac{1}{3^{200}}\right)+\left(\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...-\frac{1}{3^{198}}+\frac{1}{3^{199}}\right)\)

\(\Rightarrow\frac{4}{3}A=\frac{1}{3}+\frac{1}{3^{200}}\)

\(\Rightarrow A=\frac{\frac{1}{3}+\frac{1}{3^{200}}}{\frac{4}{3}}\)

chung minh tuong tu cau b va c

30 tháng 3 2020

1)  A = -1 / 3

2)  B = -35 / 2

  Chúc em làm bài tốt !

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

6 tháng 11 2017

a, \(\dfrac{2\cdot8^4\cdot27^2+4\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)

=\(\dfrac{2\cdot\left(2^3\right)^4\cdot\left(3^3\right)^2+2^2\cdot2^9\cdot3^9}{2^7\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot\left(3^2\right)^4}\)

=\(\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^{14}\cdot3^7+2^{10}\cdot5\cdot3^8}\)

=\(\dfrac{2^{11}\cdot3^6\cdot\left(2^2+3^3\right)}{2^{10}\cdot3^7\cdot\left(2^4+5\cdot3\right)}\)

=\(\dfrac{2^{11}\cdot3^6\cdot31}{2^{10}\cdot3^7\cdot31}\)

=\(\dfrac{2}{3}\)

6 tháng 11 2017

b, \(\dfrac{\dfrac{8}{27}\cdot\dfrac{9}{16}\cdot\left(-1\right)}{\dfrac{4}{25}\cdot\dfrac{-125}{1728}}\)

=\(\dfrac{\dfrac{8\cdot9\cdot\left(-1\right)}{27\cdot16}}{\dfrac{4\cdot\left(-125\right)}{25\cdot1728}}\)

=\(\dfrac{\dfrac{-1}{6}}{\dfrac{-5}{432}}\)

=\(\dfrac{-1}{6}\cdot\dfrac{-432}{5}\)

=\(\dfrac{72}{5}\)

5 tháng 7 2016

a.

\(\frac{2^7\times9^3}{6^5\times8^2}=\frac{2^7\times\left(3^2\right)^3}{\left(2\times3\right)^5\times\left(2^3\right)^2}=\frac{2^7\times3^6}{2^5\times3^5\times2^6}=\frac{3}{2^4}=\frac{3}{16}\)

b.

\(\frac{6^3+3\times6^2+3^3}{-13}=\frac{\left(2\times3\right)^3+3\times\left(3\times2\right)^2+3^3}{-13}=\frac{2^3\times3^3+3\times3^2\times2^2+3^3}{-13}=\frac{8\times3^3+3^3\times4+3^3}{-13}\)\(=\frac{3^3\times\left(8+4+1\right)}{-13}=\frac{27\times13}{-13}=-27\)

c.

\(\frac{5^4\times20^4}{25^5\times4^5}=\frac{\left(5\times20\right)^4}{\left(25\times4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)

d.

\(\left(\frac{5^4-5^3}{125^4}\right)=\frac{5^3\times\left(5-1\right)}{\left(5^3\right)^4}=\frac{5^3\times4}{5^{12}}=\frac{4}{5^9}\)

5 tháng 7 2016

a)\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}\)

b)\(\frac{6^3+3.6^2+3^3}{-13}=\frac{6.6^2+3.6^2+3^3}{-13}=\frac{6^2.\left(6+3\right)+3^3}{-13}=\frac{6^2.9+3^3}{-13}=\frac{6^2.3^2+3.3^2}{-13}=\frac{3^2.\left(6^2+3\right)}{-13}=\frac{3^2.39}{-13}=3^2.\left(-3\right)=-27\)

c)\(\frac{5^4.20^4}{25^5.4^5}=\frac{100^4}{100^5}=\frac{1}{100}\)

 

 

C = \(\frac{2}{3}\sqrt{144}-\left(-\frac{3}{4}\right)\div\sqrt{\frac{225}{144}}\)

C = \(\frac{2}{3}.12+\frac{3}{4}\div\frac{5}{4}\)

C = \(8+\frac{3}{5}\)

C = \(8\frac{3}{5}\)

D = \(\frac{4^6.25^5-2^{12}.25^4}{2^{12}.5^8-10^8.64}\)

D = \(\frac{\left(2^2\right)^6.\left(5^2\right)^5-2^{12}.\left(5^2\right)^4}{2^{12}.5^8-\left(2.5\right)^8.2^6}\)

D = \(\frac{2^{12}.5^{10}-2^{12}.5^8}{2^{12}.5^8-2^8.5^8.2^6}\)

D = \(\frac{2^{12}.5^8.\left(25-1\right)}{2^{12}.5^8.\left(1-2^2\right)}\)

D = \(\frac{24}{-3}\)

D = \(-8\)

18 tháng 10 2018

\(C=\frac{2}{3}\sqrt{144}-\left(\frac{-3}{4}\right):\sqrt{\frac{225}{144}}\)

\(=\frac{2}{3}\cdot12+\frac{3}{4}:\frac{5}{4}\)

\(=8+\frac{3}{4}\cdot\frac{4}{5}\)

\(=8+\frac{3}{5}\)

\(=\frac{40}{5}+\frac{3}{4}=\frac{43}{5}\)

\(D=\frac{4^6\cdot25^5-2^{12}\cdot25^4}{2^{12}\cdot5^8-10^8\cdot64}=\frac{\left(2^2\right)^6\cdot\left(5^2\right)^5-2^{12}\cdot\left(5^2\right)^4}{2^{12}\cdot5^8-\left(2\cdot5\right)^8\cdot2^6}\)

\(=\frac{2^{12}\cdot5^{10}-2^{12}\cdot5^8}{2^{12}\cdot5^8-2^{14}\cdot5^8}=\frac{5^8\left(2^{12}\cdot5^2-2^{12}\right)}{5^8\left(2^{12}-2^{14}\right)}\)

\(=\frac{2^{12}\cdot5^2-2^{12}}{2^{12}-2^{14}}=\frac{2^{12}\left(5^2-1\right)}{2^{12}\left(1-2^2\right)}=\frac{24}{-3}=-8\)