Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right):\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\left(x\ne-1;x\ne0;x\ne-2\right)\)
\(=\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right):\frac{3x^3-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\left(\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3x+3}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2-x+1-3+3x+3}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{\left(x+1\right)\left(x+2\right)}{3\left(x^2-x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2\left(x+1\right)}{3\left(x^2-x+1\right)^2}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)
Tại x = \(\frac{1}{2}\)thì:
A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{x}+1-\frac{3}{x^3+1}-\frac{3}{x^2-x+1}\right)\cdot\frac{3x^2-3x+3}{\left(x+1\right).\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
\(=\left(\frac{x+1}{x}-\frac{3}{\left(x+1\right).\left(x^2-x+1\right)}+\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x^2-x+1\right)}\right)\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\left[\frac{\left(x+1\right)^2.\left(x^2-x+1\right)-3x+3x^2+3x}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\left[\frac{x^4+x^3+x+1+3x^2}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2x^3+2x^2-2x-2}{x.\left(x+1\right)^2.\left(x+2\right)}\)
\(=\frac{3x^4+x^3+7x^2+5x+5}{x.\left(x+1\right)^2.\left(x+2\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x+4\right)\left(x-4\right)}{x\left(4-x\right)}\)
\(=\frac{\left(x+4\right)\left(x-4\right)}{-x\left(x-4\right)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+3x+x+3}{2\left(x+3\right)}\)
\(=\frac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)
\(=\frac{\left(x+1\right)\left(x+3\right)}{2\left(x+3\right)}=\frac{x+1}{2}\)
c) \(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)
\(=\frac{2x\left(x-2\right)^2}{x\left(x+2\right)\left(x-2\right)}\)
\(=\frac{2x\left(x-2\right)}{x\left(x+2\right)}\)
\(=\frac{2x^2-4x}{x^2+2x}\)
d) \(\frac{x^3-x^2y+xy^2}{x^3+y^3}\)
\(=\frac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{x}{x+y}\)
\(P=\left(\frac{x+3}{3-x}-\frac{3-x}{x+3}+\frac{4x^2}{x^2-9}\right):\left(\frac{2x+1}{x+3}+1\right)\)\(\left(ĐKXĐ:x\ne\pm3\right)\).
\(P=\left(\frac{x+3}{3-x}-\frac{3-x}{x+3}-\frac{4x^2}{9-x^2}\right):\left(\frac{2x+1}{x+3}+\frac{x+3}{x+3}\right)\).
\(P=\left[\frac{\left(x+3\right)^2}{\left(3-x\right)\left(x+3\right)}-\frac{\left(3-x\right)^2}{\left(x+3\right)\left(3-x\right)}-\frac{4x^2}{\left(x+3\right)\left(3-x\right)}\right]\)\(:\frac{3x+4}{x+3}\).
\(P=\frac{\left(x+3\right)^2-\left(3-x\right)^2-4x^2}{\left(x+3\right)\left(3-x\right)}.\frac{x+3}{3x+4}\).
\(P=\frac{\left[\left(x+3\right)^2-\left(x-3\right)^2\right]-4x^2}{\left(x+3\right)\left(3-x\right)}.\frac{x+3}{3x+4}\).
\(P=\frac{\left[\left(x+3+x-3\right)\left(x+3-x+3\right)\right]-4x^2}{\left(x+3\right)\left(3-x\right)}.\frac{x+3}{3x+4}\).
\(P=\frac{2x.6-4x^2}{\left(x+3\right)\left(3-x\right)}.\frac{x+3}{3x+4}\).
\(P=\frac{\left(12x-4x^2\right)\left(x+3\right)}{\left(x+3\right)\left(3-x\right)\left(3x+4\right)}=\frac{4x\left(3-x\right)}{\left(3-x\right)\left(3x+4\right)}=\frac{4x}{3x+4}\).
Vậy với \(x\ne\pm3\)thì \(P=\frac{4x}{3x+4}\).
#QUA ĐÂY MÌNH XIN THÔNG BÁO
# group Idea. Tuyển thành viên trên 100sp, do Quản lí : Thủy nổ ( mình :) xét duyệt nhaa, ai đủ tiêu chí gửi đơn cho https://olm.vn/thanhvien/phuongeieu . Vào group phải có kí tự sau tên ✎﹏IDΣΛ亗. Tuyển tv từ 12/5 - 31/5, nhóm có tối đa 20 tv. Mỗi tuần quản lí sẽ xét giải thưởng cho từng thành viên, lấy thành tích từ tkhđ sau 1 tuần. Chọn ra những người siêng hỏi đáp và trả lời những câu hỏi thật sự chất lượng, giúp đỡ tv trong gr và bla bla. Chưa hết =)) mỗi tháng sẽ xét loại tv, kiểm tra chất lượng tv trong nhóm và mở những cuộc thi cho ae thử sức :<
~~~ Cảm ơn ~~~