\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

Bạn tham khảo ạ :

\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right).\)\(\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

undefined

Cre : olm

Link tham khảo : https://olm.vn/hoi-dap/detail/52883974695.html

11 tháng 8 2021

\(A=2-x\sqrt{\frac{x\left(x-2\right)}{\left(x-2\right)^2}+\frac{1}{\left(x-2\right)^2}}=2-x\sqrt{\frac{\left(x-1\right)^2}{\left(x-2\right)^2}}\)

\(=2-x\cdot\frac{x-1}{x-2}=\frac{2x-4}{x-2}-\frac{x^2-x}{x-2}=\frac{-x^2+3x-4}{x-2}\)

\(B=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+\frac{3\sqrt{5}x^2}{x}=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+3\sqrt{5}x\)

Với 0 < x < 2 \(B=-2\sqrt{5}x+3\sqrt{5}x=\sqrt{5}x\)

Với x > 2 \(B=2\sqrt{5}x+3\sqrt{5}x=5\sqrt{5}x\)

\(C=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}\left(\sqrt{x}+5\right)}+\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-5\right)^2}}=\frac{\sqrt{x}-5}{\sqrt{x}}+\left|\frac{\sqrt{x}-1}{\sqrt{x}-5}\right|\)

Với 0 < x < 1 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)

Với 1 < x < 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}-\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{-9\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)

Với x > 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)

10 tháng 2 2019

cho S=1-3+32-33+...+398-399                                                                                                                                       

a. Chứng minh: S chia hêt cho 20

b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1

chịu

14 tháng 7 2016

nhầm rồi, để làm lại

a/ \(P=\left[\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right]\)

      \(=\left[\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)

        \(=\frac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

       \(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{-\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}\)

          \(=\frac{4x}{\sqrt{x}-3}\)

b/ \(P=-1\Rightarrow\frac{4x}{\sqrt{x}-3}=-1\Rightarrow3-\sqrt{x}=4x\Rightarrow4x+\sqrt{x}-3=0\)

                   \(\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(l\right)\\\sqrt{x}=\frac{3}{4}\end{cases}\Rightarrow x=\frac{9}{16}}\)

                                                                 Vậy x = 9/16

14 tháng 7 2016

ĐKXĐ: x > 0 và \(x\ne4\)

a/ \(P=\left[\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right]\)

    \(=\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}\left(\sqrt{x}-1\right)-2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

        \(=\frac{8\sqrt{x}-4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-\sqrt{x}-2}\)

        \(=\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

          \(=\frac{4x}{\left(2+\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)

b/ \(P=-1\Rightarrow\frac{4x}{x+3\sqrt{x}+2}=-1\Rightarrow-x-3\sqrt{x}-2=4x\)

                        \(\Rightarrow-5x-3\sqrt{x}-2=0\left(1\right)\), vì (1) > 0 => vô nghiệm

                Vậy k có giá trị nào của x thỏa P = -1

23 tháng 5 2021

a, Với \(x>0;x\ne1\)

 \(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)

Thay x = 4 => \(\sqrt{x}=2\)vào P ta được : 

\(\frac{1-4}{2}=-\frac{3}{2}\)

c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)

\(\Rightarrow-x< -1\Leftrightarrow x>1\)