\(P=\left(\dfrac{\sqrt{x^3+1}}{\sqrt{x}+1}+\sqrt{x}\right):\left(x+1\right);x\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)

4 tháng 11 2017

\(M=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\dfrac{3\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x^3}-1}-\dfrac{2x+1}{\sqrt{x^3}-1}\right)\)

\(M=\left(\dfrac{x+\sqrt{x}-3\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{x-\sqrt{x}-2x-1}{\sqrt{x^3}-1}\right)\)

\(M=\left(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{-x-\sqrt{x}-1}{\sqrt{x^3}-1}\right)\)

\(M=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\dfrac{-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(M=\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\)

31 tháng 7 2017

Câu a có sai đề nên mk có sửa lại nha Liên hệ giữa phép chia và phép khai phương

25 tháng 4 2017

B=\(\sqrt{x}-1\)

Để B=3 thì \(x=16\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

16 tháng 5 2021

a, Với \(x\ge0;x\ne1\)

\(Q=\left(\frac{x-1}{\sqrt{x}-1}-\frac{x\sqrt{x}-1}{x-1}\right):\left(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1-\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1-\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

16 tháng 5 2021

Bạn ghi chuẩn đề chưa vậy

26 tháng 3 2019

\(P=\dfrac{x\sqrt{x}-x-\sqrt{x}-2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)^2}{2}\)

\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)\left(x-1\right)}{2}\)

\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)\left(1-x^2\right)}{2\left(x+\sqrt{x}+1\right)}\)