\(\dfrac{2x\sqrt{x}-\sqrt{x}+1}{x-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2023

\(P=\dfrac{2x\sqrt[]{x}-\sqrt[]{x}+1}{x-1}\left(x\ge0;x\ne1\right)\)

\(\Rightarrow P=\dfrac{x\sqrt[]{x}-\sqrt[]{x}+x\sqrt[]{x}+1}{x-1}\)

\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(x-1\right)+\sqrt[]{x^3}+1}{x-1}\)

\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(x-1\right)}{x-1}+\dfrac{\left(\sqrt[]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\)

\(\Rightarrow P=\sqrt[]{x}+\dfrac{\left(x-\sqrt[]{x}+1\right)}{\left(\sqrt[]{x}-1\right)}\)

31 tháng 7 2017

dễ mà bạn quy đồng biến đỗi là ra chứ làm đánh mấy bài này ra tốn tg lắm

31 tháng 7 2017

mà kết quả của bn đk bao nhiu ạ

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

1 tháng 10 2021

\(\sqrt{x+2\sqrt{x+1}}\)

\(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)

\(\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(\left|\sqrt{x-1}+1\right|\)

1 tháng 10 2021

a )  Với \(x\ge1\) ta có : 

 \(M=\sqrt{x+2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\sqrt{x-1}+1\)

b ) Với \(x\ge\frac{1}{2}\) ta có : \(N=\sqrt{2x-1+4\sqrt{2x-1}+4}=\sqrt{\left(\sqrt{2x-1}+2\right)^2}=\sqrt{2x-1}+2\)

10 tháng 5 2018
https://i.imgur.com/nH0jngt.jpg
10 tháng 5 2018
https://i.imgur.com/s11CjBM.jpg
25 tháng 4 2017

B=\(\sqrt{x}-1\)

Để B=3 thì \(x=16\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba