Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk : \(a\ge0;b\ge0;a\ne b\)
a) \(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\dfrac{a+2\sqrt{ab}+b+a-2\sqrt{ab}+b}{a-b}\) = \(\dfrac{2\left(a+b\right)}{a-b}\)
b) đk : \(a\ge0;b\ge0;a\ne b\)
\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\dfrac{\sqrt{a}+\sqrt{b}}{1}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(a+\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}\)
= \(\dfrac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{a+b}\)
a) ta có : \(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
b) ta có : \(\dfrac{x-\sqrt{3x}+3}{x\sqrt{x}+3\sqrt{3}}=\dfrac{x-\sqrt{3x}+3}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{3x}+3\right)}=\dfrac{1}{\sqrt{x}+\sqrt{y}}\)
a, \(\frac{\sqrt{10}+\sqrt{6}}{\sqrt{30}+\sqrt{18}}=\frac{\sqrt{10}+\sqrt{6}}{\sqrt{10.3}+\sqrt{6.3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
b, Với a;b > 0
\(\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}=\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}\)
c, Với x >= 0
\(\frac{4x+3\sqrt{x}-7}{4\sqrt{x}+7}=\frac{\left(\sqrt{x}-1\right)\left(4\sqrt{x}+7\right)}{4\sqrt{x}+7}=\sqrt{x}-1\)
d, Với x >= 0 ; x khác 14
\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
a) \(\frac{\sqrt{10}+\sqrt{6}}{\sqrt{30}+\sqrt{18}}=\frac{\sqrt{10}+\sqrt{6}}{\sqrt{3}\left(\sqrt{10}+\sqrt{6}\right)}=\frac{1}{\sqrt{3}}\)
b) \(\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{a}}{\sqrt{b}}\)
c) \(\frac{4x+3\sqrt{x}-7}{4\sqrt{x}+7}=\frac{\left(\sqrt{x}-1\right)\left(4\sqrt{x}+7\right)}{\left(4\sqrt{x}+7\right)}=\sqrt{x}-1\)
d) \(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}=\frac{x+\sqrt{x}-4\sqrt{x}-4}{x-4\sqrt{x}+3\sqrt{x}-12}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)
Làm nốt nè :3
\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-2}{2x}>0\)
\(\Leftrightarrow x-2>0\left(do:x>0\right)\)
\(\Leftrightarrow x>2\)
\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)
\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)
Kết hợp với DKXĐ : \(0< a< 1\)
a: \(=2\sqrt{2}+30\sqrt{2}-3\sqrt{2}+6\sqrt{2}=26\sqrt{2}\)
b: \(=\dfrac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}+\sqrt{3}+\dfrac{5}{2}\sqrt{3}=-\dfrac{9}{2}\sqrt{3}\)
1)
a. \(P=\left(\dfrac{1}{\sqrt{a}-3}+\dfrac{1}{\sqrt{a}+3}\right)\left(1-\dfrac{3}{\sqrt{a}}\right)\)
\(\Leftrightarrow\left(\dfrac{\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\dfrac{\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{3}{\sqrt{a}}\right)\)\(\Leftrightarrow\dfrac{\sqrt{a}+3+\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}.\dfrac{\sqrt{a}-3}{\sqrt{a}}\)
\(\Leftrightarrow\dfrac{2\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a-3}\right)\left(\sqrt{a}+3\right)}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{a}+3}\)
b.
Sửa đề; \(A=\left(\dfrac{a\sqrt{a}-3}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-3\right)}-\dfrac{2\left(\sqrt{a}-3\right)}{\sqrt{a}+1}-\dfrac{\sqrt{a}+3}{\sqrt{a}-3}\right):\dfrac{a+8}{a-1}\)
\(A=\dfrac{a\sqrt{a}-3-2a+12\sqrt{a}-18-a-4\sqrt{a}-3}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-3\right)}:\dfrac{a+8}{a-1}\)
\(=\dfrac{a\sqrt{a}-3a+8\sqrt{a}-24}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-3\right)}\cdot\dfrac{a-1}{a+8}\)
\(=\sqrt{a}-1\)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}=\left|2-\sqrt{3}\right|+\sqrt{4+4\sqrt{3}+3}\)
\(=2-\sqrt{3}+\sqrt{\left(2+\sqrt{3}\right)^2}=2-\sqrt{3}+\left|2+\sqrt{3}\right|\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left[\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right].\frac{1}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right].\frac{1}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right).\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(a-2\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}+2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}\)
\(=\left|2-\sqrt{3}\right|+\sqrt{3+4\sqrt{3}+4}\)
\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(=2-\sqrt{3}+\left|\sqrt{3}+2\right|\)
\(=2-\sqrt{3}+\sqrt{3}+2\)
\(=4\)
b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)( \(\hept{\begin{cases}a,b\ge0\\a\ne b\end{cases}}\))
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(a-2\sqrt{ab}+b\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a-2\sqrt{ab}+b}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a-2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{a-2\sqrt{ab}+b+2\sqrt{ab}-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{a-b}{a-b}=1\)
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\) = \(-\sqrt{3}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\) = \(7\sqrt{2}-6\sqrt{2}+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) = \(3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) = \(6\sqrt{a}\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) = \(4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
= \(4\sqrt{b}-5\sqrt{10b}\)
\(N=\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\dfrac{\sqrt{a}\sqrt{a}+3\sqrt{a}}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\sqrt{a}-\sqrt{a}\)
\(N=0\)
\(\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}\)
\(=\dfrac{a+3\sqrt{a}-\left(a+3\sqrt{a}\right)}{\sqrt{a}+3}\)
\(=\dfrac{a+3\sqrt{a}-a-3\sqrt{a}}{\sqrt{a}+3}\)
\(=\dfrac{0}{\sqrt{a}+3}\)
\(=0\)