Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)
\(=\frac{x+y-z}{x-y+z}\)
Ta thay : \(x=0;y=2009;z=2010\) ta được :
\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)
Chúc bạn học tốt !!!
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)
Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :
\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)
Phân tích đa thức thành nhân tử à?
1) \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
2) \(x^3+1-x^2-x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left[x^2-x+1-x\right]\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
( x + y )3 - x3 - y3
= ( x + y )3 - ( x3 + y3 )
= ( x + y )3 - ( x + y )( x2 - xy + y2 )
= ( x + y )[ ( x + y )2 - ( x2 - xy + y2 ) ]
= ( x + y )( x2 + 2xy + y2 - x2 + xy - y2 )
= 3xy( x + y )
x3 + 1 - x2 - x
= ( x3 + 1 ) - ( x2 + x )
= ( x + 1 )( x2 - x + 1 ) - x( x + 1 )
= ( x + 1 )( x2 - x + 1 - x )
= ( x + 1 )( x2 - 2x + 1 )
= ( x + 1 )( x - 1 )2
Bạn viết rõ hơn nhé :
\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
= \(\frac{x^4-xy^3}{2xy+y^2}.\frac{2x+y}{x^3+x^2y+xy^2}\)
= \(\frac{x.\left(x-y\right).\left(x^2+xy+y^2\right).\left(2x+y\right)}{y.\left(2x+y\right).x.\left(x^2+xy+y^2\right)}\)
= \(\frac{x-y}{y}\)
Chúc bạn học tốt !!!
\(a,\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x\left(x-3\right)\)
\(=x^3-6x^2+12x-27-x^3+x+6x^2-18x\)
\(=-5x-27\)
\(b,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
a)
=\(x^3-6x^2+12x+8-27-x^3+x+6x^2-18x\)
=-5x-19
b)
=\(8x^3+y^3-8x^3+y^3\)
=\(2y^3\)
c)
=(x+y+z-x-y)\(^2\) +x+y
=\(z^2+x+y\)
hc tốt
a: \(=\dfrac{5x^2y^4}{-10x^2y}=-\dfrac{1}{2}y^3=-\dfrac{1}{2}\cdot8=-4\)
b: \(=\dfrac{15x^4y^2}{5x^3y}+\dfrac{20x^3y^2}{5x^2y}=3xy+4xy=7xy\)
\(=7\cdot\dfrac{1}{7}\cdot2009=2009\)