G=(x+y+z)3−(x+y−z)3−(−x+y+z)3−(x−y+x)3

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Hằng đẳng thức bậc cao sử dụng nhị thức newton

18 tháng 9 2017

\(\left(x+y+z\right)^3\)

\(=\left[\left(x+y\right)+z\right]^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3\left(x+y\right)\left[\left(x+y\right)z+z^2\right]+z^3\)

\(=x^3+y^3+z^3+3xy\left(x+y\right)+3\left(x+y\right)\left(xz+yz+z^2\right)\)

=\(x^3+y^3+z^3+3\left(x+y\right)\left(xz+xy+yz+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

18 tháng 9 2017

Ta có: (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x)

\(\Leftrightarrow\) (x + y + z)3 - x3 - y3 - z3 = 3(x + y)(y + z)(z + x)

Phân tích VT ta được:

(x + y + z)3 - x3 - y3 - z3 = \(\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

= (x + y)3 + z3 + 3z(x + y)(x + y + z) - x3 - y3 - z3

= x3 + y3 + 3xy(x + y) + z3 + 3z(x + y)(x + y + z) - x3 - y3 - z3

= 3xy(x + y) + 3z(x + y)(x + y + z)

= 3(x +y)(xy + xz + yz + z2)

= 3(x +y)\(\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

= 3(x + y)(y + z)(z + x) (đpcm)

Bài này cần áp dụng công thức (x + y)3 = x3 + y3 + 3xy(x + y) nhiều lần để phân tích nhé bạn.

Trả lời :

Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)

Study ưell

Không chắc 

6 tháng 8 2019

cj mai>>>>

8 tháng 11 2017

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

8 tháng 11 2017

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)