\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)

\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\frac{\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\sqrt{3}-2-\sqrt{2}=-2\)

30 tháng 9 2020

dòng cuối là \(\sqrt{3}-2-\sqrt{3}=-2\)nhá

2 tháng 8 2016

*****~~~~~~~~~~*****

 \(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+\sqrt{6}}{\sqrt{6}+1}\)

\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}+1}\)

\(=\sqrt{3}+\sqrt{6}\)

\(=\sqrt{3}\left(1+\sqrt{2}\right)\)

*****~~~~~~~~~~*****

\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(=\sqrt{3}+2+\sqrt{2}\)

(Chúc bạn học tốt nha!)

a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)

b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)

17 tháng 8 2016
  • \(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\)
  • \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{5}\)
  • \(\frac{2\sqrt{3}-\sqrt{6}}{1-\sqrt{3}}=\frac{-\sqrt{6}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{6}\)
  • \(\frac{a-\sqrt{a}}{1-\sqrt{a}}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
  • \(\frac{p-2\sqrt{p}}{\sqrt{p}-2}=\frac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
25 tháng 7 2018

a,\(x\ge0,x\ne49\)

22 tháng 7 2017

a,=0

b,\(5\sqrt{5}\)

c=\(8\sqrt{7a}\)

d,=\(11\sqrt{3}\)

22 tháng 7 2017

bạn lm ra luôn đc ko