Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(f\left(x\right)=\left|x-1\right|-\left(2x-5\right)\)
Xét 2 TH:
+) Nếu \(\left|x-1\right|=x-1\)
=> \(f\left(x\right)=x-1-2x+5\)
=> \(f\left(x\right)=4-x\)
+) Nếu \(\left|x-1\right|=1-x\)
=> \(f\left(x\right)=1-x-2x+5\)
=> \(f\left(x\right)=6-3x\)
Vậy...
b) \(f\left(5\right)=\left|5-1\right|-\left(2.5-5\right)\)
=> \(f\left(5\right)=4-2=2\)
Vậy...
c) \(f\left(x\right)=0\)
=> \(\left|x-1\right|-\left(2x-5\right)=0\)
=> \(\left|x-1\right|=2x-5\)
Vì \(\left|x-1\right|\ge0\forall x\)
=> \(2x-5\ge0\)
=> \(x\ge\frac{5}{2}\)
=> \(x-1\ge\frac{5}{2}-1=\frac{3}{2}>0\)
=> \(\left|x-1\right|=x-1\)
=> \(x-1-2x+5=0\)
=> \(4-x=0\)
=> \(x=4\)
\(b)\) Ta có :
\(C=\left|x+1\right|+\left|x-3\right|\)
\(C=\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=\left|4\right|=4\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(3-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x+1\ge0\\3-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le3\end{cases}\Leftrightarrow}-1\le x\le3}\)
Trường hợp 2 :
\(\hept{\begin{cases}x+1\le0\\3-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge3\end{cases}}}\) ( loại )
Vậy \(C=4\) khi \(-1\le x\le3\)
Chúc bạn học tốt ~
\(\text{*Với }x-3\ge0\text{ thì:}\)
\(A=5\left(x-3\right)-2\left(2x-1\right)\)
\(=5x-15-4x+2\)
\(=x-13\)
\(\text{*Với }x-3< 0\text{ thì:}\)
\(A=-5\left(x-3\right)-2\left(2x-1\right)\)
\(=-5x+15-4x+2\)
\(=-9x+17\)
\(\cdot\text{Vậy:}\)
\(A=x-13\text{ khi }x-3\ge0\)
\(A=-9x+17\text{ khi }x-3< 0\)
A=3(2x-1) - I x-5 I (*)
a)xét 2 th:
TH(1) : A=6x-3-x+5 (x-5>=0) = 5x-2
TH(2) : A=6x-3-5+x (x-5<0) = 7x-8
b)có I x-3I=6 => x-3=6 (x-3>=0) hay x-3= -6 (x-3<0)
<=> x=9 (x-3>=0) hay x= -3 (x-3<0)
thay x=9 (x-3>=0) vào (*)
A = 47
thay x= -3 (x-3<0) vào (*) => A= -29