K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2024

\(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\left(a>0;a\ne1\right)\\ =\left[\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\\ =\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}-1}\right):\dfrac{1}{\sqrt{a}-1}\\ =\dfrac{\sqrt{a}-1}{\sqrt{a}-1}:\dfrac{1}{\sqrt{a}-1}\\ =1:\dfrac{1}{\sqrt{a}-1}\\ =\sqrt{a}-1\)

4 tháng 9 2018

ĐKXĐ: x≠0,x≠1,x>0

\(A=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\dfrac{a-1}{\sqrt{a}}\right)\left(\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\left(\dfrac{\left(a-1\right)\left(a+2\sqrt{a}+1+a-2\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)}\right)=\dfrac{2\sqrt{a}}{\sqrt{a}}+\dfrac{2a+2}{\sqrt{a}}=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

8 tháng 11 2021

\(A=\left(a-1\right)\sqrt{\frac{a}{a-1}}+\sqrt{a\left(a-1\right)}-a\sqrt{\frac{a-1}{a}}\)

\(A=\sqrt{\left(a-1\right)^2.\frac{a}{a-1}}+\sqrt{a\left(a-1\right)}-\sqrt{a^2.\frac{a-1}{a}}\)

\(A=\sqrt{\left(a-1\right)a}+\sqrt{a\left(a-1\right)}-\sqrt{a\left(a-1\right)}\)

\(A=\sqrt{a\left(a-1\right)}\)

5 tháng 10 2018

A= (\(\dfrac{\left(a\sqrt{a}-1\right)\cdot\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\cdot\left(a-\sqrt{a}\right)}{\left(a-\sqrt{a}\right)\cdot\left(a+\sqrt{a}\right)}\) )\(\cdot\left(\dfrac{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}+1\right)+\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)}\right)\)

A = \(\left(\dfrac{a^2\sqrt{a}+a\sqrt{a^2}-a-\sqrt{a}-a^2\sqrt{a}-a\sqrt{a^2}+a+\sqrt{a}}{a^2-\sqrt{a^2}}\right)\) \(\cdot\left[\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\sqrt{a^2}-1^2}\right]\)

A = \(\left(\dfrac{2a\sqrt{a^2}-2a}{a^2-\sqrt{a^2}}\right)\cdot\left[\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{a-1}\right]\)

A = \(\left[\dfrac{2\left(a^2-a\right)}{a^2-a}\right]\cdot\left[\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{a-1}\right]\)

A =\(2\cdot\left(\sqrt{a}+1\right)^2\cdot\left(\sqrt{a}-1\right)\)

5 tháng 10 2018

\(A=\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)=\left[\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a-1}{\sqrt{a}}\right]\left[\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]\)\(=\left[\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\right]\left[\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1+a-1}{\sqrt{a}}.\dfrac{2a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\left(a+2\sqrt{a}-1\right)\left(2a+2\right)}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

24 tháng 9 2020

1) \(VT=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}=VP\)(ĐPCM)

2) \(VT=\text{[}\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\text{]}.\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)

\(=\frac{\left(a+b-\sqrt{ab}-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}=\frac{\left(a-b\right)^2}{\left(a-b\right)^2}=1=VP\)(ĐPCM)

4) \(VT=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)(ĐPCM)

25 tháng 4 2020

thanks

18 tháng 11 2023

\(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+\dfrac{4\sqrt{a}-1}{a}\right)\) ?

a: \(A=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)

\(=2+\dfrac{2a+2}{\sqrt{a}}=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

b: Để A=7 thì \(2a-5\sqrt{a}+2=0\)

\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(2\sqrt{a}-1\right)=0\)

=>a=4 hoặc a=1/4

12 tháng 8 2018

A = \(\left(\dfrac{a-1}{\sqrt{a}-1}-2\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)=\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-2\right)\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+1\right)=\left(\sqrt{a}+1-2\right)\left(\sqrt{a}+1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)=a-1\)

\(B=\left(\dfrac{a\sqrt{a}-a}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}=\left(\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}=\left(\dfrac{a}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{\left(\sqrt{a}-1\right)\left(a-2\right)}{\sqrt{a}\left(a+2\right)}\)

\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{a}{a-1}\right):\left(\sqrt{a}-\dfrac{\sqrt{a}}{\sqrt{a}+1}\right)=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\dfrac{a}{a-1}\right):\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)-\sqrt{a}}{\sqrt{a}+1}\right)=\dfrac{\sqrt{a}}{a-1}:\dfrac{a}{\sqrt{a}+1}=\dfrac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}+1}{a}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

\(D=\dfrac{a+\sqrt{a}}{\sqrt{a}}+\dfrac{a+4}{\sqrt{a}+2}=\sqrt{a}+1+\dfrac{a+4}{\sqrt{a}+2}=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)+\sqrt{a}+2+a+4}{\sqrt{a}+2}=\dfrac{a+2\sqrt{a}+\sqrt{a}+2+a+4}{\sqrt{a}+2}=\dfrac{2a+3\sqrt{a}+6}{\sqrt{a}+2}\)

\(E=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}+\dfrac{1-\sqrt{a}}{a+\sqrt{a}}\right)=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)+1-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\cdot\dfrac{a-1+1-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{\left(\sqrt{a}-1\right)\cdot\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\cdot\sqrt{a}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}}\)