Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
= \(\sqrt{2+3+5+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
= \(\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}\)
= \(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
9, Để căn thức trên có nghĩa khi \(1-x^2\ge0\Leftrightarrow-1\le x\le1\)
10, Để căn thức trên có nghĩa khi \(\hept{\begin{cases}\frac{x-2}{x+3}\ge0\\x+3\ne0\end{cases}}\Leftrightarrow x< -3;x\ge2\)
a) \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}-\frac{2}{4-x}\right):\frac{\sqrt{x}+3}{\sqrt{x}-2}\left(ĐK:x\ge0;x\ne4\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-2+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+3}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+3}=\frac{\sqrt{x}}{\sqrt{x}+2}\)
b) Vì: \(\sqrt{x}+4>0,\forall x\inĐK\)
=> \(2\sqrt{x}+4>\sqrt{x}\)
=> \(\frac{\sqrt{x}}{2\sqrt{x}+4}< 0\)
=> \(\frac{\sqrt{x}}{\sqrt{x}+2}< 2\)
=>đpcm
điều kiện : \(x>0;x\ne4\)
\(H=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)
\(H=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(H=\dfrac{1}{\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)}\) \(=\dfrac{\sqrt{x}+2-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(H=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{x-4}=\dfrac{4}{x-4}\)
điều kiện : \(a>0;b>0;a\ne b\)
\(K=\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
\(K=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)
\(K=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(K=b-a\)
=(√x (√x -3)+2√x (√x +3)-3x-9)/(x-9)
=(x-3√x+2x+6√x-3x-9x)/(x-9)
=3(√x -3)/(√x +3)(√x -3)
=3/√x +3