Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}\)
\(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
..................................
\(A=\dfrac{a^2+b^2-2ab}{ab}+\dfrac{b^2-2ab+c^2}{bc}+c^2+a^2-\dfrac{2ca}{ca}\)
\(A=\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}-2\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}-2\right)=\dfrac{\left(b+c\right)}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}-6\)
\(A=\left[\dfrac{\left(b+c\right)}{a}+1\right]+\left[\dfrac{\left(a+c\right)}{b}+1\right]+\left[\dfrac{\left(a+b\right)}{c}+1\right]-9\)
\(A=\dfrac{\left(a+b+c\right)}{a}+\dfrac{\left(a+b+c\right)}{b}+\left[\dfrac{\left(a+b+c\right)}{c}\right]-9\)
\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-9\)
Ket luan
\(A\ne B\) => đề sai--> hoặc mình công trừ sai
B1:
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Xét hiệu:
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)
\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
=> BĐT luôn đúng
*
Ta có:
\(a< b+c\Rightarrow a^2< ab+ac\)
\(b< a+c\Rightarrow b^2< ab+ac\)
\(c< a+b\Rightarrow a^2< ac+bc\)
Cộng từng vế bất đẳng thức ta được:
\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
B2:
Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)
Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)
Suy ra:
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
=> ĐPCM
A= \(\dfrac{1^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(4-1\right)\left(4+1\right)}\cdot...\cdot\dfrac{n^2}{n\left(n+2\right)}\)
= \(\dfrac{1}{1\cdot3}\cdot\dfrac{3^2}{3\cdot5}\cdot\dfrac{5^2}{5\cdot7}\cdot...\cdot\dfrac{n^2}{n\left(n+2\right)}\)
=\(\dfrac{1}{n+2}\)
B = \(\dfrac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}\)
= \(\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}\)
= \(\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}\)
= \(\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}=\dfrac{16}{1-x^{16}}\)
\((\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ba-c^2-ca\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+cb-a^2-ab\right)}=0 \)
\(\Leftrightarrow\dfrac{1}{\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]}+\dfrac{1}{\left(c-a\right)\left[\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\right]}+\dfrac{1}{\left(a-b\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]}=0\)
\(\Leftrightarrow\dfrac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\dfrac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\dfrac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)(t/m)
Suy ra ta được Đt cần chứng minh.
Chúc bạn học tốt với hoc24 nha
Lời giải:
Ta có:
\(\frac{1}{(b-c)(a^2+ac-b^2-bc)}+\frac{1}{(c-a)(b^2+bc-c^2-ca)}+\frac{1}{(a-b)(c^2+cb-a^2-ab)}\)
\(=\frac{1}{(b-c)[(a^2-b^2)+(ac-bc)]}+\frac{1}{(c-a)[(b^2-c^2)+(ba-ca)]}+\frac{1}{(a-b)[(c^2-a^2)+(cb-ab)]}\)
\(=\frac{1}{(b-c)[(a-b)(a+b)+c(a-b)]}+\frac{1}{(c-a)[(b-c)(b+c)+a(b-c)]}+\frac{1}{(a-b)[(c-a)(c+a)+b(c-a)]}\)
\(=\frac{1}{(b-c)(a-b)(a+b+c)}+\frac{1}{(c-a)(b-c)(b+c+a)}+\frac{1}{(a-b)(c-a)(c+a+b)}\)
\(=\frac{(c-a)+(a-b)+(b-c)}{(a-b)(b-c)(c-a)(a+b+c)}=\frac{0}{(a-b)(b-c)(c-a)(a+b+c)}=0\)
Ta có đpcm.
\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)
\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=2\left(a+b+c\right)\)