Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\)\(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right)\)\(:\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(:\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(.\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}+1}.\frac{5\sqrt{x}}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)
\(A\in Z\Leftrightarrow\frac{5\sqrt{x}}{2\sqrt{x}+1}\in Z\Leftrightarrow\frac{10\sqrt{x}}{2\sqrt{x}+1}\in Z\)
\(\Rightarrow\frac{10\sqrt{x}+5-5}{2\sqrt{x}+1}\in Z\Leftrightarrow5-\frac{5}{2\sqrt{x}+1}\in Z\)
\(\Rightarrow\frac{5}{2\sqrt{x}+1}\in Z\Rightarrow2\sqrt{x}+1\inƯ_5\)
Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)
Nhưng \(2\sqrt{x}+1\ge1\)
\(\Rightarrow\orbr{\begin{cases}2\sqrt{x}+1=1\\2\sqrt{x}+1=5\end{cases}\Rightarrow\orbr{\begin{cases}2\sqrt{x}=0\\2\sqrt{x}=4\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
Vậy \(x\in\left\{0;4\right\}\)
a: \(A=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{\left(2\sqrt{x}-3\right)}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b: Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào A, ta được:
\(A=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(=\dfrac{3\sqrt{2}-3-10}{2}:\dfrac{2\sqrt{2}-2+2}{2}\)
\(=\dfrac{3\sqrt{2}-13}{2\sqrt{2}}=\dfrac{6-13\sqrt{2}}{4}\)
a, \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
= \(\sqrt{2+2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)
= \(\sqrt{2}\) + 1 - 2 + \(\sqrt{2}\)
= 2\(\sqrt{2}\) - 1
b, \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
= \(\sqrt{5-4\sqrt{5}+4}-\sqrt{5}\)
= \(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
= \(\sqrt{5}-2-\sqrt{5}\)
= - 2
c, \(\sqrt{28+8\sqrt{7}}-\sqrt{7}\)
= \(\sqrt{16+8\sqrt{7}+7}-\sqrt{7}\)
= \(\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
= 4 + \(\sqrt{7}\) - \(\sqrt{7}\)
= 4
a, Biến đổi ta được E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, Ta có E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) = \(1+\dfrac{4}{\sqrt{x}-3}\) .
. Nếu x không là số chính phương thì \(\sqrt{x}\) là số vô tỉ . Suy ra E là số vô tỉ ( loại )
. Nếu x là số chính phươn thì \(\sqrt{x}\) là số nguyên nên để E có giá trị nguyên thì \(4⋮\left(\sqrt{x}-3\right)\) .
Mà \(\sqrt{x}-3\ge-3\) nên \(\left(\sqrt{x}-3\right)\in\left\{-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Kết hợp với ĐKXĐ ta được x = 1 ; 16 ; 25 ; 49
a: ĐKXĐ: x>=0; x<>1
b: \(B=\dfrac{2\sqrt{x}+2+x-\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-1}\)
Khi x=3+2căn2 thì \(B=\dfrac{\sqrt{2}+1}{2+2\sqrt{2}}=\dfrac{1}{2}\)
a: \(A=\dfrac{x+4\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}-2-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{4\sqrt{x}-1+x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)
b: \(B=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
Tự c/m đi bạn ơi
ko pk im ik