Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(0\le a\ne1\)
\(\frac{\sqrt{a}-a}{\sqrt{a}-1}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
b) ĐKXĐ : \(b\ne0,a\ne-\sqrt{b}\)
\(\frac{a-\sqrt{b}}{\sqrt{b}}:\frac{\sqrt{b}}{a+\sqrt{b}}=\frac{a-\sqrt{b}}{\sqrt{b}}.\frac{a+\sqrt{b}}{\sqrt{b}}=\frac{a^2-b}{b}=\frac{a^2}{b}-1\)
c) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=\sqrt{5}\left(2-5-4+11\right)\)\(=4\sqrt{5}\)
d) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
\(=7\left(2-2\sqrt{2}+1\right)+14\sqrt{2}=7\left(2-2\sqrt{2}+1+2\sqrt{2}\right)=7.3=21\)
e) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
a) B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0) B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\) C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)
a) \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\frac{1}{\sqrt{2}}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Bài 1 :
a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)
\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)
\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)
\(A=\sqrt{7}-\sqrt{28}\)
\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)
Vậy \(A=-\sqrt{7}\)
b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)
\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)
\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)
\(B=a-b\)
Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)
_Minh ngụy_
Bài 2 :
a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)
Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))
Vậy \(x>1\)thì \(B>0\)
_Minh ngụy_
a) \(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(ĐK:a>0;a\ne1;a\ne4\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
b) Để \(A>\frac{1}{6}\)
\(\Leftrightarrow\)\(\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\)
\(\Leftrightarrow\)\(\frac{\sqrt{a}-2}{3\sqrt{a}}-\frac{1}{6}>0\)
\(\Leftrightarrow\)\(\frac{2\sqrt{a}-4-\sqrt{a}}{6\sqrt{a}}>0\)
\(\Leftrightarrow\)\(\frac{\sqrt{a}-4}{6\sqrt{a}}>0\)
\(\Leftrightarrow\sqrt{a}-4>0\Leftrightarrow a>16\left(tm\right)\)
Vậy a>16 thì \(A>\frac{1}{6}\)
ĐKXĐ : \(a>0,a\ne4,a\ne1\)
a) \(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left(\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
b) \(A>\frac{1}{6}\Rightarrow\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\Rightarrow-\frac{2}{3\sqrt{a}}+\frac{1}{3}>\frac{1}{6}\Rightarrow\frac{2}{3\sqrt{a}}>\frac{1}{6}\Rightarrow\frac{1}{\sqrt{a}}>\frac{1}{4}\Rightarrow a< 16\)
Kết hợp với điều kiện xác định.
\(A=\frac{a\left(\sqrt{a}+2\right)-4\left(\sqrt{a}+2\right)}{a-4}=\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{a-4}=\sqrt{a}+2\)
\(B=\frac{12\sqrt{6}}{\sqrt{\sqrt{\left(\sqrt{6}+1\right)^2}-\sqrt{\left(\sqrt{6}-1\right)^2}}}=\frac{12\sqrt{6}}{\sqrt{2}}=12\sqrt{3}\)
C k thấy đề
\(A=\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\frac{\left(a\sqrt{a}-4\sqrt{a}\right)+\left(2a-8\right)}{a-4}=\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{a-4}=\sqrt{a}+2\)
\(B=\frac{12\sqrt{6}}{\sqrt{7+2\sqrt{6}}-\sqrt{7-2\sqrt{6}}}=\frac{12\sqrt{6}}{\sqrt{1+6+2\sqrt{6}}-\sqrt{1+6-2\sqrt{6}}}\)
\(=\frac{12\sqrt{6}}{\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}-1\right)^2}}=\frac{12\sqrt{6}}{1+\sqrt{6}-\sqrt{6}+1}=6\sqrt{6}\)
\(C=\frac{\sqrt{c^2+2c+1}}{\left|c\right|-1}=\frac{\left|c+1\right|}{\left|c\right|-1}\)
A = \(\frac{8}{\sqrt{5}-1}\) - (\(2\sqrt{5}-1\) ) ( chúng ta cần trục căn thức lên để khử mẫu )
= \(\frac{8\left(\sqrt{5}+1\right)}{5-1}\)- \(\left(2\sqrt{5}-1\right)\)
= \(2\sqrt{5}\)+ 2 - \(2\sqrt{5}\)+1
= 3
B = \(\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\)( x \(\ge\)0 )
= \(\frac{1-2\sqrt{x}+x+4\sqrt{x}}{1+\sqrt{x}}\)
= \(\frac{1+2\sqrt{x}+x}{1+\sqrt{x}}\)
= \(\frac{\left(1+\sqrt{x}\right)^2}{1+\sqrt{x}}\)
= 1 +\(\sqrt{x}\)
#mã mã#
\(A=\frac{2\left(\sqrt{7}+\sqrt{6}\right)}{1}-2\sqrt{7}+3\sqrt{6}\)
\(=-\sqrt{6}\)
Học tốt!!!!!!!!!!!!!!!!!!!!!!!