\(A=\dfrac{2}{a-b}+\dfrac{2}{b-c}+\dfrac{2}{c-a}+\dfrac{\left(a-b\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

10 tháng 7 2017

\(T=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

Do a+b+c =0 nên => a+b = (-c) => \(\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2\)

\(=>a^2+b^2-c^2=-2ab\)

Làm tương tự trên ta có : \(b^2-c^2-a^2=2ac;\)

\(a^2-b^2-c^2=2bc;\)

\(=>T=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)

Với a+b+c = 0 thì \(a^3+b^3+c^3=3abc\) (bạn tự chứng minh hằng đẳng thức mở rộng nhé);

\(=>T=\dfrac{3abc}{2abc}=\dfrac{3}{2}=1,5\)

CHÚC BẠN HỌC TỐT.....

6 tháng 1 2019

\(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}=a+b+c\)

\(\Leftrightarrow\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=a+b+c\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{a+b+c}{abc}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{a}\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Thay vào A r tính thôi

6 tháng 1 2019

cảm ơn

27 tháng 3 2017

Ta có \(\dfrac{2}{a-b}\)+\(\dfrac{2}{b-c}\)+\(\dfrac{2}{c-a}\)

= (\(\dfrac{1}{a-b}\)+\(\dfrac{1}{c-a}\))+(\(\dfrac{1}{b-c}\)+\(\dfrac{1}{a-b}\))+(\(\dfrac{1}{c-a}\)+\(\dfrac{1}{b-c}\))

=(\(\dfrac{1}{a-b}\)- \(\dfrac{1}{a-c}\))+(\(\dfrac{1}{b-c}\)- \(\dfrac{1}{b-a}\))+(\(\dfrac{1}{c-a}\) - \(\dfrac{1}{c-b}\))

=\(\dfrac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right).\left(c-a\right)}\)

= \(\dfrac{a-c-a+b}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{b-a-b+c}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{c-b-c+a}{\left(c-b\right).\left(c-a\right)}\)

= \(\dfrac{-c+b}{\left(a-b\right).\left(a-c\right)}\)+ \(\dfrac{-a+c}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{-b+a}{\left(c-b\right).\left(c-a\right)}\)

= \(\dfrac{b-c}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{c-a}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{a-b}{\left(c-b\right).\left(c-a\right)}\)

Chúc bạn học tốt.haha

14 tháng 5 2017

VP = \(\dfrac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{\left(b-c\right)^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{\left(c-a\right)^2}{\left(c+b\right)\left(a+b\right)}\)

\(=\left(a-b\right).\dfrac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\left(b-c\right).\dfrac{\left(b+a\right)-\left(c+a\right)}{\left(b+a\right)\left(c+a\right)}+\left(c-b\right).\dfrac{\left(c+b\right)-\left(a+b\right)}{\left(c+b\right)\left(a+b\right)}\)

\(=\left(a-b\right).\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+\left(b-c\right)\left(\dfrac{1}{c+a}-\dfrac{1}{b+a}\right)+\left(c-a\right).\left(\dfrac{1}{a+b}-\dfrac{1}{c+b}\right)\)

\(=\left(a-b\right).\dfrac{1}{b+c}-\left(a-b\right).\dfrac{1}{a+c}+\left(b-c\right).\dfrac{1}{c+a}-\left(b-c\right).\dfrac{1}{b+a}+\left(c-a\right).\dfrac{1}{a+b}-\left(c-a\right).\dfrac{1}{c+b}\)

\(=\left(2a-b-c\right).\dfrac{1}{b+c}+\left(2b-c-a\right).\dfrac{1}{c+a}+\left(2c-a-b\right).\dfrac{1}{a+b}\)

\(=\dfrac{2a}{b+c}-\left(b+c\right).\dfrac{1}{b+c}+\dfrac{2b}{c+a}-\left(c+a\right).\dfrac{1}{c+a}+\dfrac{2c}{a+b}-\left(a+b\right).\dfrac{1}{a+b}\)

\(=2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-3\left(đpcm\right)\)

15 tháng 5 2017

\(VT=\dfrac{2a^3-a^2b-a^2c-ab^2-ac^2+2b^3-b^2c-bc^2+2c^3}{(a+b)(b+c)(c+a)} \)

\(\\=\dfrac{a^3+a^2b-2a^2b-2ab^2+ab^2+b^3+b^3+b^2c-2b^2c-2bc^2+bc^2+c^3+c^3+c^2a-2c^a+2ca^2-ca^2+a^3}{(a+b)(b+c)(c+a)}\)

\(\\=\dfrac{(a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)}{(a+b)(b+c)(c+a)}\)

\(\\\Rightarrow VT=\dfrac{(a-b)^2}{(c+a)(b+c)}+\dfrac{(b-c)^2}{(c+a)(a+b)}+\dfrac{(c-a)^2}{(a+b)(b+c)}=VP\)

mới đọc đề đã thấy rắc rối rồi

11 tháng 9 2018

\(\dfrac{-a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=-\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-c\right)\left[-\left(a-b\right)\right]}+\dfrac{c^2}{-\left(a-c\right)\left[-\left(b-c\right)\right]}\)

\(=\dfrac{-a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\\ =\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{\left(a^2-ac-ab+bc\right)\left(b-c\right)}\)

\(=\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{a^2b-a^2c-abc+ac^2-ab^2+abc+b^2c-bc^2}\)

\(=\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{a^2b-a^2c+ac^2-ab^2+b^2c-bc^2}\)

9 tháng 8 2017

a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)

\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)

c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)

\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)

d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)

\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)

\(=\dfrac{x}{x+y}\)

10 tháng 8 2017

thanks hihi

17 tháng 7 2017

Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)

\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)

\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)

\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được

\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có:

\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng theo vế (1);(2);(3) ta có ĐPCM

CHÚC BẠN HỌC TỐT.........