Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>25x=35^2=1225
=>x=49
b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
=>x=-1
a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)
\(=14\sqrt{2x}+30\)
b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)
\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)
\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)
a: \(=\sqrt{\dfrac{x^2\left(x^2+1\right)}{\left(x-1\right)^2}}=\left|\dfrac{x}{x-1}\right|\cdot\sqrt{x^2+1}\)
b: \(=\sqrt{\dfrac{9x^3-9x^2+12x^2-12x+4x-4}{x-1}}\)
\(=\sqrt{\dfrac{\left(x-1\right)\left(9x^2+12x+4\right)}{x-1}}=\left|3x+2\right|\)
a) \(\sqrt{4x+8}-\sqrt{9x+18}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow\sqrt{4\left(x+2\right)}-\sqrt{9\left(x+2\right)}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow2\sqrt{x+2}-3\sqrt{x+2}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow0\sqrt{x+2}=\sqrt{x+5}\Leftrightarrow0=\sqrt{x+5}\)
\(\Leftrightarrow0=x+5\Leftrightarrow-5=x\)
Vậy phương trình đã cho có nghiệm duy nhất là x = -5
b) ĐKXĐ: \(x\ge0;x\ne1\)
\(T=\left(\dfrac{1}{1+2\sqrt{x}}-\dfrac{1}{\sqrt{3}+2}\right):\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)
\(=\left(\dfrac{\sqrt{3}+2-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}\right):\left(\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\right)\)
\(=\dfrac{1-2\sqrt{x}+\sqrt{3}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)
a) Bổ sung: ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x+2}XĐ\Leftrightarrow x+2\ge0\\\sqrt{x+5}XĐ\Leftrightarrow x+5\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ge-5\end{matrix}\right.\Rightarrow}x\ge-2}\) Sau khi tìm được x = -5 ta thấy k thỏa mãn Đk: \(x\ge-2\)
Vậy pt đã cho là vô nghiệm
Lời giải:
$A=4.\sqrt{\frac{25}{4}}.\sqrt{x}-\frac{8}{3}.\sqrt{\frac{9}{4}}.\sqrt{x}-\frac{4}{3x}.\sqrt{\frac{9}{64}}.\sqrt{x^3}$
$=10\frac{x}-4\sqrt{x}-\frac{1}{2x}.x\sqrt{x}=10x-4x-\frac{1}{2}\sqrt{x}$
$=\frac{11}{2}\sqrt{x}$
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
\(A=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\sqrt{\dfrac{9x^3}{64}}\)
\(A=4\left|\dfrac{5\sqrt{x}}{2}\right|-\dfrac{8}{3}\left|\dfrac{3\sqrt{x}}{2}\right|-\dfrac{4}{3x}\left|\dfrac{3x\sqrt{x}}{8}\right|\)
Vì \(x>0\) nên:
\(A=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}=\dfrac{11\sqrt{x}}{2}\)