\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\right)\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(B=1-\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)

10 tháng 5 2018

\(A=1+\frac{1}{2}+\frac{1}{^{2^2}}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{^{2^2}}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

10 tháng 5 2018

A=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Leftrightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

Đặt \(I=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2I=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(2I=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2I-I=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{2}{2^{2011}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(I=1-\frac{1}{1^{2012}}\)

\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)

Vậy \(A=2-\frac{1}{2^{2012}}\)

11 tháng 5 2019

đúng rùi đó

11 tháng 5 2019

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2011}}\)

\(A=2-\frac{1}{2^{2012}}\)

13 tháng 4 2017

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

Nên \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

Suy ra \(2A-A=2-\frac{1}{2^{2012}}\)hay \(A=2-\frac{1}{2^{2012}}\)

        Vậy \(A=2-\frac{1}{2^{2012}}\)

13 tháng 4 2017

\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

=>\(A-\frac{1}{2}A=\left(1+\frac{1}{2}+..+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)\)

=>\(\frac{1}{2}A=1-\frac{1}{2^{2013}}\)

=>\(A=2-\frac{1}{2^{2012}}\)

Cô mình chữa bài này rồi nên bạn cứ yên tâm

17 tháng 5 2016

\(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+...+\frac{2}{2^{2011}}\)

\(2A-A=\left(2+1+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

17 tháng 5 2016

Ta có: \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)

=>  \(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

=>  \(2A=2+1+...+\frac{2}{2^{2011}}\)

=> \(2A-A=\left(2+1+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

=> \(A=2-\frac{1}{2012}\)

1 tháng 5 2016

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

mk nhanh nhat nhe

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

\(=2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{2011}}-\frac{1}{2^{2012}}=2-\frac{1}{2^{2012}}\)

7 tháng 5 2017

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

7 tháng 5 2017

Dat B=1/2+1/2^2+1/2^3+.............+1/2^2012=>2B=1+1/2+1/2^2+.......+1/2^2011

=>2B-B=1/2^2011-1/2^2012=2^2012-2^2011/2^4023

=>A=1+2^2012-2^2011/2^4023