Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)
= \(\sqrt{7}+1-\sqrt{7}+1=2\)
=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)
b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
= \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)
= \(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)
=> B=\(\sqrt{5}+1\)
c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)
=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)
= \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
= \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)= \(2\sqrt{5}\)
=> A=\(\sqrt{5}\)
Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
= \(A-\sqrt{6-2\sqrt{5}}\)
= \(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1
a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5}-2-\left(2+\sqrt{5}\right)\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2\)
b) tương tự
\(a.A=\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\sqrt{3}=\left(\sqrt{3-2\sqrt{3}.\sqrt{2}+2}+\sqrt{2}\right)\sqrt{3}=3\) \(b.B=\sqrt{4+2\sqrt{3}}+\sqrt{5+2\sqrt{6}}+\sqrt{2}=\sqrt{3+2\sqrt{3}+1}+\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}+\sqrt{2}=\sqrt{3}+1+\sqrt{3}+\sqrt{2}+\sqrt{2}=2\sqrt{3}+2\sqrt{2}+1\) \(c.2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}=2+\sqrt{17-4\sqrt{5+2.2\sqrt{5}+4}}=2+\sqrt{17-4\left(\sqrt{5}+2\right)}=2+\sqrt{5-2.2\sqrt{5}+4}=2+\sqrt{5}-2=\sqrt{5}\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3.\sqrt{5}}-\sqrt{2}\)
\(\sqrt{2}.A=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{9-2.3.\sqrt{5}+5}-2\)
\(\sqrt{2}.A=\sqrt{5}+1+3-\sqrt{5}-2=2\)
\(\Rightarrow A=\sqrt{2}\)
ĐKXĐ: \(\hept{\begin{cases}2x-4\ge0\\x+2.\sqrt{2x-4}\ge0\\x-2\sqrt{2x-4}\end{cases}}\Leftrightarrow x\ge2\)
\(\sqrt{x+2.\sqrt{2x-4}}+\sqrt{x-2.\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Tự phá trị tuyệt đối
b) Sửa đề: \(M=\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\) ĐK: \(a\ge2\)
\(=\sqrt{\left(a-2\right)+4\sqrt{a-2}+4}+\sqrt{\left(a-2\right)-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}\)
\(=\sqrt{a-2}+2+\left|\sqrt{a-2}-2\right|\)
1) Nếu \(a\ge6\) thì \(\sqrt{a-2}-2\ge0\) nên \(M=2\sqrt{a-2}\)
2) Nếu \(2\le a< 6\) thì \(\sqrt{a-2}-2< 0\) nên \(M=4\)
Vậy ...
a/ \(N=\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
\(\Rightarrow N^2=6-2\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)
\(=6-4=2\)
\(\Rightarrow N=-\sqrt{2}\)