K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

\(\begin{array}{l}A = {\left( {2x + 1} \right)^3} - 6x\left( {2x + 1} \right) = {\left( {2x} \right)^3} + 3.{\left( {2x} \right)^2}.1 + 3.2x{.1^2} + {1^3} - \left( {6x.2x + 6x.1} \right)\\ = 8{x^3} + 12{x^2} + 6x + 1 - 12{x^2} - 6x = 8{x^3} + \left( {12{x^2} - 12{x^2}} \right) + \left( {6x - 6x} \right) + 1 = 8{x^3} + 1\end{array}\)

Chọn C.

27 tháng 4 2017

a)\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)

=\(2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)

b) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)

c) \(\dfrac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+4\right)\)

\(=3x^3-\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x+\dfrac{1}{2}x+2=2x^3-\dfrac{3}{2}x^2+2\)

30 tháng 5 2017

a) 3(22+1)(24+1)(28+1)(216+1)

=(2+1)(2-1)(22+1)(24+1)(28+1)(216+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)

=(24-1)(24+1)(28+1)(216+1)

.......

=(216-1)(216+1)=232-1

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

19 tháng 3 2020

=[x(x-2)/2(x2+4)-2x2/(4+x2)(2-x)][x(x-2)(x+1)/x3]

={[x(x-2)(2-x)-4x2 ]/2(2-x)(4+x2)} .[x(x-2)(x+1)/x3 ]

=[-x(x2+4)/2(2-x)(4+x2)].[x(x-2)(x+1)/x3 ]

=-x.x(x-2)(x+1)/2(2-x)x3

=(x+1)/2x

25 tháng 9 2020

A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)

   = x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x

  = x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x

  = (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)

= -6x + 16

=> có phụ thuộc vào biến x

B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)

   = 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)

    = 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7

=> không phụ thuộc vào biến x

25 tháng 9 2020

\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)

\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)

\(=-6x+16\)

Vậy biểu thức A phụ thuộc vào biến x

\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8x^3-8-8x^3+1\)

\(-7\)

Vậy biểu thức B không phụ thuộc vào biến x

24 tháng 6 2017

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6