Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{cos^2x\left(1+cot^2x\right)}{sin^2x\left(1+tan^2x\right)}=\frac{tan^2x\left(1+cot^2x\right)}{1+tan^2x}=\frac{tan^2x+tan^2x.cot^2x}{1+tan^2x}=\frac{1+tan^2x}{1+tan^2x}=1\)
Câu b ko rút gọn được, bạn coi lại đề
\(x^2sin^2a+y^2cos^2a-2xy.sina.cosa+x^2cos^2a+y^2sin^2a+2xy.sinx.cosa\)
\(=x^2\left(sin^2a+cos^2a\right)+y^2\left(cos^2a+sin^2a\right)=x^2+y^2\)
\(=\frac{\sin^2x}{1+\frac{\cos x}{\sin x}}+\frac{\cos^2x}{1+\frac{\sin x}{\cos x}}-1=\frac{\sin^3x}{\sin x+\cos x}+\frac{\cos^3x}{\sin x+\cos x}-1.\)
\(=\frac{\sin^3x+\cos^3x}{\sin x+\cos x}-1=\frac{\left(\sin x+\cos x\right).\left(\sin^2x-\sin x.\cos x+\cos^2x\right)}{\sin x+\cos x}-1\)
\(=1-\sin x.\cos x-1=-\sin x.\cos x\)
\(=\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{sin^2a+cos^2a+2sina\cdot cosa}\) =\(\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{\left(sina+cosa\right)^2}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{\tan a+1}\)
\(A=\frac{2.\left(cosx+1\right)-sin^2x}{sinx.\left(cosx+1\right)}=\frac{2.cosx+2-sin^2x}{sinx.\left(cosx+1\right)}=\frac{2.cosx+1+cos^2x}{sinx.\left(cosx+1\right)}=\frac{\left(cosx+1\right)^2}{sinx.\left(cosx+1\right)}=\frac{cosx+1}{sinx}\)