K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

Rút gọn biểu thức :
a, A = (x - 1)3 - (x + 1)3

= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1

= -6x2 - 2

b, B = (x + y)3 + (x - y)3

= x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3

= 2x3 + 6xy2

c, C = (x - y)3 - 3xy(x - y)

= x3 - 3x2y + 3xy2 - y3 - 3x2y + 3xy2

= x3 - 6x2y + 6xy2 - y3
d, D = (x + 1)3 + (x - 3)3 - 2(x2 +15)(x - 3)

= x3 + 3x2 + 3x + 1 + x3 - 9x2 + 27x - 27 - (2x2 + 30)(x - 3)

= 2x3 - 6x2 + 30x - 26 - 2x3 + 6x2 - 30x + 90

= 64

13 tháng 7 2018

a, (x-y)^3 -(x+y)^3

= x^3 -3x^2 y +3xy^2 -y^3 -(x^3 +3x^2 y +3xy^2 +y^3)

= -6x^2 y -2 y^3

b, = x(x^2 -1) -(x^3 +1)

    = x^3 -x -x^3 -1

    = -x -1

c, = x^2 -10x +25 +x^2 + 10x+ 25 -2x^2

    = 50

d, = x^3 + 3x^2 y + 3xy^2 + y^3 -3x^2 y -3xy^2

    = x^3 + y^3

17 tháng 7 2018

Bài 1: Tìm giá trị nhỏ nhất của biểu thức sau
a) P= x2-6x+5
b) Q= 4x2+4x-1
c) M= x2-x
d) N=x2+x+4
e) H= x2+3x+5
f) F= x2-5x
Bài 2 Tính giá trị của biểu thức sau
a) x3+9x2+27x+27 tại x= -103
b)x3-45x2+75x tại x =25
c) x2+8x tại x= -14
Bài 3 Tìm x, biết
a) (x+3)2-x(3x+1)2+(2x+1)(4x2-2x+1-3x2) =54
b) (x-3)2 -(x-3)(x2+3x+9)+6(x+1)2+3x= -33
c) 6(x+1)2-2(x+1)3+2(x-1)(x2+x+1)=1

8 tháng 8 2020

Ừ oke

10 tháng 7 2016

Bài 1:

  • a,(2+xy)^2=4+4xy+x^2y^2
  • b,(5-3x)^2=25-30x+9x^2
  • d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1

a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)

\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)

\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)

\(=5\cdot\left(1-2xy^2\right)\)

\(=5-10xy^2\)

b) Ta có: \(9x^2-\left(3x-4\right)^2\)

\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)

\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)

\(=4\cdot\left(6x-4\right)\)

\(=24x-16\)

c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)

\(=a^2-b^4\)

d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

\(=a^4+4a^3+4a^2-9\)

e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)

\(=x^2-y^2+12y-36\)

f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)

\(=\left(y-3\right)^2-\left(2z\right)^2\)

\(=y^2-6y+9-4z^2\)

g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)

\(=\left(2y\right)^3-5^3\)

\(=8y^3-125\)

h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)

\(=\left(3y\right)^3+4^3\)

\(=27y^3+64\)

i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)

\(=\left(x-3\right)^3-\left(x-2\right)^3\)

\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)

\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)

\(=-3x^2+15x-19\)

j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

\(=6x^2y+2y^3\)

24 tháng 7 2020

Câu c sai đề rồi kìa :)))

24 tháng 7 2020

Câu c phải là \(\left(\frac{x}{2}-y\right)^3\) chứ không phải \(\left(\frac{4}{2}-2\right)^3\)

17 tháng 8 2021

CC có làm thì mới có ăn

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

I. Trắc nghiệm Câu 1 : Để biểu thức x^3 + 6x^2 + 12x + m là lập phương cùa một tổng thì giá trị của m là : A. 8 B. 4 C. 6 D. 16 Câu 2 : x^2 - 2x + 9 = ( x - 3 )^2 A. Đúng B. Sai Câu 3 : ( 1/2x - 3 )^3 = 1/8x^3 - 9/4x^2 + 27/2x - 27 A. Đúng B. Sai Câu 4 : Tính giá trị của các biểu thức A = 8x^3 - 12x^2y + ...
Đọc tiếp

I. Trắc nghiệm
Câu 1 : Để biểu thức x^3 + 6x^2 + 12x + m là lập phương cùa một tổng thì giá trị của m là :
A. 8 B. 4 C. 6 D. 16
Câu 2 : x^2 - 2x + 9 = ( x - 3 )^2
A. Đúng B. Sai
Câu 3 : ( 1/2x - 3 )^3 = 1/8x^3 - 9/4x^2 + 27/2x - 27
A. Đúng B. Sai
Câu 4 : Tính giá trị của các biểu thức A = 8x^3 - 12x^2y + 6xy^2 - y^3 tại x = 1/2, y = 1
A. 1/4 B. 27/8 C. -3/4 D. 0
Câu 5 : Rút gọn biểu thức B = ( x + 2 )^3 - ( x - 2 )^3 - 12x^2 ta thu đc kết quả là :
A. 16 B. 2x^3 + 24x C. x^3 + 24x^2 + 16 D. 0
Câu 6 : x^2 - 1 =
A. ( x -1 ) ( x + 1 ) B. ( x + 1 ) ( x + 1 ) C. x^2 + 2x + 1 D. x^2 - 2x - 1
Câu 7 : x^2 - 10xy + 25y^2 = ( 5 - y )^2
A. Đúng B. Sai
Câu 8 : Tính giá trị cuả các biểu thức : A = 4x^2 - 6xy + 9y^2 tại x = 1/2, y = 2/3
A. 4 B. 1/4 C. -1 D. 1
Câu 9 : Rút gọn biểu thức A = ( x - 2 )^2 - ( x - 3 )^2 + ( x + 4 )^2 thu đc kết quả :
A. x^2 + 10x + 11 B. 9x^2 - 1 C. 3x^2 - 9 D. x^2 - 9
Câu 10 : Giá trị nhỏ nhất của biểu thức A = 9x^2 - 6x + 4 đạt đc khi x bằng
A. 2 B. 3 C. 1/3 D.
Giúp mk vs ạ mk đang cần gấp


0
24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1