K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Ta có:  

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right).....+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)....\left(2^{256}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)....\left(2^{256}+1\right)\)

\(......\)

\(=\left[\left(2^{256}\right)^2-1\right]+1\)

\(=2^{512}\)

11 tháng 2 2017

A=2512

6 tháng 5 2015

A=(ghi lại biieur thức)

2A=2+1+1/2+1/2^2+….+1/2^2011

2A-A=A=(2+1+1/2+1/2^2+….+1/2^2011)-(1+1/2+1/2^2+...+1/2^2012)

A=2-1/2^2012

6 tháng 5 2015

1/2 A= 1/2+1/2^2+1/2^3+1/2^4+...........+1/2^2013

=>A-1/2A= 1 -1/2^2013

=>1/2A=1 -1/2^2013

=>A=(1 - 1/2^2013) : 1/2

Tính từng phép tính trong ngoặc ta được :

\(A= \frac{3}{4}. \frac{8}{9} . ....\frac{899}{900}\)

\(A=\frac{1.3}{2.2} .\frac{2.4}{3.3}.... \frac{29.31}{30.30}\)

Gộp các thừa số với sau được

\(A= \frac{(1.2.3.4....29)(3.4.5.6...31)}{(2.3.4...30)(2.3.4..30)}\)

\(A= \frac{31}{30.2} = \frac{31}{60}\)

17 tháng 3 2019

A= 1/2+1/22+1/23+1/24+.....+1/22019

2A= 1+1/2+1/22+1/23+1/24+.....+1/22018

2A-A=(1+1/2+1/22+1/23+1/24+.....+1/22018)-(1/2+1/22+1/23+1/24+.....+1/22019)

A=1-1/22019

20 tháng 4 2016

2A = 2 + 1 + 1/2 + 1/22 + 1/2+ ... + 1/22011

mà A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/22012

2A - A = 2 - 1/22012

A = 2 - 1/22012

20 tháng 4 2016

Ta có A=1+1/2+1/2^2+1/2^3+........+1/2^2012

=>2A=2+1+1/2+1/2^2+.......+1/2^2011

=>2A-A=(2+1+1/2+1/2^2+.....+1/2^2011)-(1+1/2+1+1/2^2+1/2^3+.....+1/2^2012)

=>A=\(2-\frac{1}{2^{2012}}\)

\(A=\frac{2^{2013-1}}{2^{2012}}\)

3 tháng 5 2017

A=đã cho.

1/2*A=1/2+1/2^2+1/2^3+...+1/2^2012+1/2^2013.

A-1/2*A=1-1/2^2013(khử).

1/2*A=1-1/2^2013.

A=2*(1-1/2^2013).

A=2-2/2^2013.

A=2-1/2^2012.

19 tháng 4 2016

2A=2+1+1/2+1/2^2+1/2^3+...+1/2^2011
2A-A=(2+1+1/2+1/2^2+1/2^3+...+1/2^2011)-(1+1/2+1/2^2+1/2^3+...+1/2^2012)
A=2-2/2012
k cho mik nhé


 

19 tháng 4 2016

1+1/2012

10 tháng 5 2016

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

=>\(A=1-\frac{1}{2^{100}}\)