K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Ta có : $3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)$

$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)$

$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)$

$=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)$

$=(2^{16}-1)(2^{16}+1)(2^{32}+1)$

$=(2^{32}-1)(2^{32}+1)$

$=2^{64}-1$

20 tháng 6 2017

3.(22+1)(24+1)(28+1)(216+1)(232+1)

= (22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

= (24-1)(24+1)(28+1)(216+1)(232+1)

= (28-1)(28+1)(216+1)(232+1)

= (216-1)(216+1)(232+1)

= (232-1)(232+1)

= 264 - 1

Gợi ý: Áp dụng hằng đẳng thức số 3 trong 7 hằng đẳng thức đáng nhớ

4 tháng 11 2020

goi y nha A=1/2.(3^2-1)(3^2+1)....(3^32+1)

2 tháng 9 2016

( bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

Ta có

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(=2^{64}-1\)

2 tháng 9 2016

3.(22+1)(24+1)(28+1)(216+1)(232+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)

=(28-1)(28+1)(216+1)(232+1)

=(216-1)(216+1)(232+1)

=(232-1)(232+1)

=264-1

7 tháng 10 2015

   3(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(28-1)(28+1)(216+1)(232+1)(264+1)

=(216-1)(216+1)(232+1)(264+1)

=(232-1)(232+1)(264+1)

=(264-1)(264+1)

=(2128-1)

Nếu thấy đúng thì thích cho mình nha

 

30 tháng 10 2020

\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(=2^{64}-1\)

30 tháng 10 2020

A = 3( 22 + 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )

= ( 22 - 1 )( 22 + 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )

= ( 24 - 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )

= ( 28 - 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )

= ( 216 - 1 )( 216 + 1 )( 232 + 1 )

= ( 232 - 1 )( 232 + 1 )

= 264 - 1

5 tháng 11 2017

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

5 tháng 11 2017

3.(22+1).(24+1).(28+1).(216+1)

=(22-1).(22+1).(24+1).(28+1).(216+1)

=(24-1).(24+1).(28+1).(216+1)

=(28-1).(28+1).(216+1)

=(216-1).(216+1)

=232-1

31 tháng 10 2016

4294967295

31 tháng 10 2016

cái này là rút gọn biểu thức

12 tháng 7 2016

Đặt \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\).Ta có : 

\(=>\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=>2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=>2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

...............................................................................

Cuối cùng \(=>2A=3^{64}-1\).

\(=>A=\frac{3^{64}-1}{2}\)

12 tháng 7 2016

Đặt \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=...........................................\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)

\(\Rightarrow A=\frac{3^{64}-1}{2}\)

9 tháng 10 2016

\(Q=5^{32}-24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=5^{32}-\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=5^{32}-\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=5^{32}-\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=5^{32}-\left(5^{16}-1\right)\left(5^{16}+1\right)=5^{32}-\left(5^{32}-1\right)=1\)

9 tháng 10 2016

\(Q=5^{32}-24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=5^{32}-\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=5^{32}-\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=5^{32}-\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=5^{32}-\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(=5^{32}-5^{32}+1\)

= 1