Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này
llllllllllllll
Thừa số tổng quát: \(n^4+4=n^4+4n^2+4-4n^2=\left(n^2+2\right)-4n^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)
\(=\left[\left(n+1\right)^2+1\right]\left[\left(n-1\right)^2+1\right]\)
Thay vào r làm thôi bạn
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
ĐKXĐ; ...
a/ \(P=\frac{x^2}{x+4}\left[\frac{\left(x+4\right)^2}{x}\right]+9=x\left(x+4\right)+9=\left(x+2\right)^2+5\ge5\)
\(P_{min}=5\) khi \(x=-2\)
b/ \(Q=\left(\frac{\left(x+2\right)\left(x^2-2x+4\right).4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right).\frac{x\left(x-2\right)^3}{-16}\)
\(=\left(\frac{4\left(x^2-2x+4\right)-4x\left(x-2\right)}{\left(x-2\right)^2}\right).\frac{-x\left(x-2\right)^3}{16}\)
\(=\frac{16}{\left(x-2\right)^2}.\frac{-x\left(x-2\right)^3}{16}=-x\left(x-2\right)=-x^2+2x\)
\(=1-\left(x-1\right)^2\le1\)
\(Q_{max}=1\) khi \(x=1\)
Ta có:
\(\frac{\left(2^4+4\right).\left(6^4+4\right).\left(10^4+4\right).\left(14^4+4\right)}{\left(4^4+4\right).\left(8^4+4\right).\left(12^4+4\right).\left(16^4+4\right)}\)
\(=\frac{\left(1^2+1\right).\left(3^2+1\right).\left(5^2+1\right).\left(7^2+1\right).\left(9^2+1\right).\left(11^2+1\right).\left(13^2+1\right).\left(15^2+1\right)}{\left(3^2+1\right).\left(5^2+1\right).\left(7^2+1\right).\left(9^2+1\right).\left(11^2+1\right).\left(13^2+1\right).\left(15^2+1\right).\left(17^2+1\right)}\)
\(=\frac{1^2+1}{17^2+1}=\frac{1}{145}\)
\(\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)\left(14^4+4\right)}{\left(4^4+4\right)\left(8^4+4^4\right)\left(12^4+4\right)\left(16^4+4\right)}\)
\(=\frac{4\left(2^4+6^4+10^4+14^4\right)}{4\left(4^4+8^4+12^4+16^4\right)}\)
\(=\frac{4.76848}{4.90624}\)
\(=\frac{307392}{362496}=\frac{1601}{1888}\)