\(B=3\cdot\dfrac{2.8^4.27^2+4.6^9}{2^7.6^7+2^7.40.9^4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(=\left(2.\left(2^3\right)^4.\left(3^3\right)^2+2^2.\left(2.3\right)^9\right):\left(2^{12}.\left(3^2\right)^3.31\right)\)

\(=\left(2^{13}.3^6+2^{11}.3^9\right):\left(2^{12}.3^6.31\right)\)

\(=\left[2^{11}.3^6\left(2^2+3^3\right)\right]:\left(2^{12}.3^6.31\right)\)

\(=\frac{2^{11}.3^6.31}{2^{12}.3^6.31}=\frac{1}{2}\)

4 tháng 7 2019

Đưa về phân số:

\(=\frac{2.8^4.27^2+4.6^9}{2^{12}.9^3.31}\)

\(=\frac{2.\left(2^3\right)^4.\left(3^3\right)^2+2^2.\left(2.3\right)^9}{2^{12}.\left(3^2\right)^3.31}\)

\(=\frac{2.2^{3.4}.3^{3.2}+2^2.2^9.3^9}{2^{12}.3^{2.3}.31}\)

\(=\frac{2.2^{12}.3^6+2^{2+9}.3^9}{2^{12}.3^6.31}\)

\(=\frac{2^{1+12}.3^6+2^{11}.3^9}{2^{12}.3^6.31}\)

\(=\frac{2^{13}.3^6+2^{11}.3^9}{2^{12}.3^6.31}\)

\(=\frac{2^{11}.3^6\left(2^2+3^3\right)}{2^{12}.3^6.31}\)

\(=\frac{2^{11}.3^6.31}{2^{12}.3^6.31}=\frac{1}{2}\)

Em hiểu hơn ko?

28 tháng 3 2017

\(M=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^6.3^4}{3^8.\left(3^4\right)^4.3^5.\left(2^3\right)^2}=\frac{3^8.3^{15}.3^6.3^4}{3^8.3^{16}.3^5.2^6}=\frac{3^{29}.3^4}{3^{29}.2^6}=\frac{1.81}{1.64}=\frac{81}{64}\)

Tính giá trị biểu thức : 1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\) 2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\) 3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\) 4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\) 5....
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)

2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)

4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)

5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)

7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)

9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)

10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)

12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)

13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)

14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)

15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)

16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)

2
27 tháng 11 2017

1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)

3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)

4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)

29 tháng 4 2022

hôi lì sít

10 tháng 4 2018

\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.243.8^2}\)

\(M=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^6.3^4}{3^8.\left(3^4\right)^4.\left(3^5\right).\left(2^3\right)}\)

\(M=\frac{3^8.3^{15}.3^6.3^4}{3^8.3^{16}.3^5.8}\)

\(M=\frac{3^{33}}{3^{29}.8}\)

\(M=\frac{3^4}{1.8}\)

\(M=\frac{81}{8}\)

Chúc bạn học tốt !!! 

10 tháng 4 2018

Sửa hộ mk : 

\(8^2=2^9\)

Kết quả : \(\frac{81}{512}\)

5 tháng 5 2018

A,

\(\left(7\dfrac{4}{9}+3\dfrac{7}{11}\right)-3\dfrac{4}{9}=7\dfrac{4}{9}+3\dfrac{7}{11}-3\dfrac{4}{9}\)

\(=7\dfrac{4}{9}-3\dfrac{4}{9}+3\dfrac{7}{11}=4+3\dfrac{7}{11}=7\dfrac{7}{11}\)

5 tháng 5 2018

B,

\(5\dfrac{2}{7}.\dfrac{8}{11}+5\dfrac{2}{7}.\dfrac{5}{11}-5\dfrac{2}{7}.\dfrac{2}{11}=5\dfrac{2}{7}.\left(\dfrac{8}{11}+\dfrac{5}{11}-\dfrac{2}{11}\right)\)

\(=5\dfrac{2}{7}.1=5\dfrac{2}{7}\)

19 tháng 7 2017

\(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)

\(=\dfrac{11.3^{29}-\left(3^2\right)^{15}}{2^2.3^{28}}\)

\(=\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\)

\(=\dfrac{3^{29}\left(11-3\right)}{2^2.3^{28}}\)

\(=\dfrac{3^{29}.2^3}{2^2.3^{28}}\)

\(=\dfrac{3.2}{1.1}=6\)

7 tháng 5 2018

1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)

\(B< 1\)

2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)

\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)

\(B=\dfrac{1}{20}\)

3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)

\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)

\(A=11\)

4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)

Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)

\(\Rightarrow B>A\)

12 tháng 6 2017

\(1,\)

\(\dfrac{45^2.3^8.10^5}{5^5.3^7.18^5}\)

\(=\dfrac{3^4.5^2.3^8.2^5.5^5}{5^5.3^7.2^5.3^{10}}\)

\(=\dfrac{3^{12}.2^5.5^7}{5^5.3^{17}.2^5}\)

\(=\dfrac{1.5^2}{3^5.1}\)

\(=\dfrac{25}{243}\)

\(2,\)

\(\dfrac{4^5.9^4+2.6^9}{2^{10}.3^8+6^8.20}\)

\(=\dfrac{2^{10}.3^8+2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)

\(=\dfrac{2^{10}.3^8+2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\dfrac{2^{10}.3^8.4}{2^{10}.3^8.6}\)

\(=\dfrac{2^{12}.3^8}{2^{11}.3^9}\)

\(=\dfrac{2}{3}\)

\(3,\)

\(\dfrac{15.3^{11}+4.27^4}{9^7}\)

\(=\dfrac{3.5.3^{11}+2^2.3^{12}}{3^{14}}\)

\(=\dfrac{5.3^{12}+2^2.3^{12}}{3^{14}}\)

\(=\dfrac{3^{12}\left(5+2^2\right)}{3^{14}}\)

\(=\dfrac{3^{12}.9}{3^{14}}\)

\(=\dfrac{3^{14}}{3^{14}}\)

\(=1\)

\(4,\)

\(\dfrac{4^7.2^8}{3.2^{15}.16^2-5^2\left(2^{10}\right)^2}\)

\(=\dfrac{2^{22}}{3.2^{23}-5^2.2^{20}}\)

\(=\dfrac{2^{22}}{2^{20}.\left(-1\right)}\)

\(=\dfrac{2^{22}}{-2^{20}}\)

\(=-4\)

* Mấy bài còn lại tương tự đấy bạn tự làm đi

Mình mỏi tay lắm rồi

12 tháng 6 2017

P/s:khuyến khích tự làm,chỉ làm mẫu 1 câu:

1)\(\dfrac{45^2.3^8.10^5}{5^5.3^7.18^5}=\dfrac{\left(5.9\right)^2.3.3^7.\left(2.5\right)^5}{5^5.3^7.\left(2.9\right)^5}\)\(=\dfrac{5^2.9^2.3.3^7.2^5.5^5}{5^5.3^7.2^5.9^5}\)\(=\dfrac{5^2.9^2.3.1.1.1}{1.1.1.9^5}\)\(=\dfrac{5^2.9^2.3}{9^5}=\dfrac{5^2.9^2.3}{9^2.9^3}=\dfrac{5^2.3}{9^3}=\dfrac{75}{729}=\dfrac{25}{243}\)