\(\sqrt{\dfrac{3a}{2}}.\sqrt{\dfrac{2a}{75}}\left(a\ge0\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a. \(\sqrt{\dfrac{3a}{2}}.\sqrt{\dfrac{2a}{75}}=\sqrt{\dfrac{3a.2a}{2.75}}=\sqrt{\dfrac{3a^2}{75}}=\sqrt{\dfrac{a^2}{25}}=\dfrac{\sqrt{a^2}}{\sqrt{25}}=\dfrac{a}{5}\)

b.\(\sqrt{5a}.\sqrt{\dfrac{2a}{a}}=\sqrt{5a}.\sqrt{2}=\sqrt{10a}\)

26 tháng 7 2018

a.\(\sqrt{\dfrac{3a}{2}}.\sqrt{\dfrac{2a}{75}}=\dfrac{\sqrt{3a}}{\sqrt{2}}.\dfrac{\sqrt{2a}}{\sqrt{25}.\sqrt{3}}=\dfrac{a}{5}\) b. \(\sqrt{5a}.\sqrt{\dfrac{2a}{a}}=\dfrac{\sqrt{5}.\sqrt{a}.\sqrt{2a}}{\sqrt{a}}=\sqrt{10a}\)

31 tháng 3 2017

a) ĐS: ; b) ĐS: 26; c) ĐS: 12a

d) - = - 6a + 9 -

= - 6a + 9 - = - 6a + 9 - 6│a│.

Khi a ≥ 0 thì │a│= a.

Do đó - = - 6a + 9 -6a = - 12a + 9.

Khi a < 0 thì │a│= a.

Do đó - = - 6a + 9 + 6a = + 9.

15 tháng 7 2017

a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=-10\sqrt{2}+5.2-\left(18-30\sqrt{2}+25\right)\)

\(=-10\sqrt{2}+10-18+30\sqrt{2}-25\)

\(=20\sqrt{2}-33\)

b) câu b đề sai

16 tháng 7 2017

câu a, \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2=-10\sqrt{2}+5.2-\left(8-30\sqrt{2}+25\right)\)

= \(-33+20\sqrt{2}\)

4 tháng 9 2017

a) \(\sqrt{\left(\sqrt{7-2}\right)^2}=\sqrt{5}\)

b)\(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-3\sqrt{2}\right)^2}\)

=\(\sqrt{2}-1-2+3\sqrt{2}=4\sqrt{2}-3\)

c)\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

=\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=2\sqrt{3}\)

d) hình như bn ghi sai

e)\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

=\(\left(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{4-2\sqrt{3}}}+\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{4+2\sqrt{3}}}\right):\sqrt{2}\)

=\(\left(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{3}-1}+\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{3}+1}\right):\sqrt{2}\)

=\(\dfrac{\sqrt{2+\sqrt{3}}\left(\sqrt{3}+1\right)+\sqrt{2-\sqrt{3}}\left(\sqrt{3}-1\right)}{2\sqrt{2}}\)

=\(\dfrac{\sqrt{6+3}+\sqrt{2+\sqrt{3}}+\sqrt{6-3}-\sqrt{2+\sqrt{3}}}{2\sqrt{2}}\)

=\(\dfrac{3+\sqrt{2+\sqrt{3}}+\sqrt{3}-\sqrt{2+\sqrt{3}}}{2\sqrt{2}}\)

=\(\dfrac{3+\sqrt{3}}{2\sqrt{2}}\)

f) \(\sqrt{9a^2}+3a-7=-3a+3a-7=-7\)

g)\(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}+3x+2\)

=\(\dfrac{\sqrt{\left(2x-1\right)^2}}{4x-2}+3x+2=\dfrac{2x-1}{2\left(2x-1\right)}+3x+2\)

=\(\dfrac{1}{2}+3x+2=\dfrac{5}{2}+3x\)

h)\(\sqrt{\left(5a-1\right)^2}+2a-3\)

nếu a<0 :\(-5a+1+2a-3=-3a-2\)

nếu a>0 : \(5a-1+2a-3=7a-4\)

i)\(\sqrt{\dfrac{2a}{5}}.\sqrt{\dfrac{5a}{18}}+2\left(a-1\right)\)

=\(\sqrt{\dfrac{10a^2}{90}}+2a-2=\sqrt{\dfrac{a^2}{9}}+2a-2\)

=\(\dfrac{a}{3}+2a-2=\dfrac{7a}{3}-2\)

31 tháng 3 2017

a) Vì nên . Do đó:

=

b)

Vì a>0,5 nên 2a-1>0. Do đó .

a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)

b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)

\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)

c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)

3 tháng 7 2017

a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

b) đề sai rồi nha

c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)

\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)