Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm nốt ::v
\(2.3\sqrt{\left(a-2\right)^2}=3\text{ |}a-2\text{ |}=3\left(a-2\right)\left(a< 2\right)\)
\(3.\sqrt{81a^4}+3a^2=\sqrt{3^4.a^4}+3a^2=9a^2+3a^2=12a^2\)
\(4.\sqrt{64a^2}+2a=\text{ |}8a\text{ |}+2a=8a+2a=10a\left(a>=0\right)\)
\(6.\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}=\text{ |}a+3\text{ |}+\text{ |}a-3\text{ |}\)
\(7.\dfrac{\sqrt{1-2x+x^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\text{ |}x-1\text{ |}}{x-1}\)
\(8.\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{\text{ |}3x-1\text{ |}}{\left(3x-1\right)\left(3x+1\right)}\)
\(9.4-x-\sqrt{4-4x+x^2}=4-x-\sqrt{\left(x-2\right)^2}=4-x-\text{ |}x-2\text{ |}\)
Mình làm ba câu mẫu, bạn theo đó mà làm các câu còn lại.
Giải:
1) \(2\sqrt{a^2}\)
\(=2\left|a\right|\)
\(=2a\left(a\ge0\right)\)
Vậy ...
5) \(3\sqrt{9a^6}-6a^3\)
\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)
\(=3.3a^3-6a^3\)
\(=9a^3-6a^3\)
\(=3a^3\)
Vậy ...
10) \(C=\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
\(\Leftrightarrow C=\sqrt{\left(2x-1\right)^2}-\sqrt{\left(2x+1\right)^2}\)
\(\Leftrightarrow C=2x-1^2-\left(2x+1^2\right)\)
\(\Leftrightarrow C=2x-1-2x-1\)
\(\Leftrightarrow C=-2\)
Vậy ...
a: \(2\sqrt{x^2}=2\left|x\right|=-2x\)
b: \(=\dfrac{1}{2}\cdot\left| x^5\right|=-\dfrac{1}{2}x^5\)
c: \(=\left|\left(a-5\right)^2\right|=\left(a-5\right)^2\)
d: \(=\left|8a\right|+2a=8a+2a=10a\)
e: \(=\left|3a^3\right|-6a^3=-3a^3\)
d, \(D=\sqrt{3+2\sqrt{2}}=\sqrt{2+2.\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
e,\(E=\sqrt{8-2\sqrt{15}}=\sqrt{5-2.\sqrt{5}.\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}\)
a,ĐKXĐ: \(\forall x\in R\)
\(\Rightarrow A=\left|a+3\right|+\left|a-3\right|\)\(=\left|-a-3\right|+\left|a-3\right|\)
Vì \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) *Dấu ''='' xảy ra\(\Leftrightarrow A.B\ge0\) *
\(\Rightarrow A\ge\left|-a-3+a-3\right|=6\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(-a-3\right)\left(a-3\right)\ge0\Leftrightarrow\left(a+3\right)\left(a-3\right)\ge0\)
\(\Leftrightarrow-3\le a\le3\)
Vậy ...
Câu 1:
\(A=\dfrac{2-a\sqrt{a}+2\sqrt{a}-a}{2-\sqrt{a}}\cdot\dfrac{2-\sqrt{a}}{2-a}\)
\(=\dfrac{-a\sqrt{a}-a+2\sqrt{a}+2}{2-a}\)
Câu 2:
\(=\left|3a-1\right|=\left|-3\sqrt{a}-1\right|=3\sqrt{a}+1\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
Ta có: \(D=\sqrt{a^2-10a+25}+\sqrt{a^2-6a+9}\)
\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(a-3\right)^2}\)
\(=\left|a-5\right|+\left|a-3\right|\)
\(=5-a+a-3\)(Vì \(3\le a\le5\))
=2
a, \(\sqrt{\left(2-\sqrt{5}\right)^2}=\sqrt{5}-2\left(\sqrt{5}>2\right)\)
b, \(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\left(3>\sqrt{2}\right)\)
c, Với a < 3
\(\sqrt{\left(a-3\right)^2}+\left(a-9\right)=3-a+a-9=-6\)
d, \(A=\sqrt{\left(2a+5\right)^2}-\left(2a-7\right)\)
\(=\left|2a+5\right|-2a+7\)
+) Xét \(x\ge\dfrac{-5}{2}\) có:
\(A=2a+5-2a+7=12\)
+) Xét \(x< \dfrac{-5}{2}\) có:
\(A=-2a-5-2a+7=-4a+2\)
Vậy...
\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ < =>\sqrt{8^2.a^2}+2a\\ < =>\sqrt{\left(8a\right)^2+2a}\\ < =>\left|8a\right|+2a\\ < =>8a+2a\\ < =>10a\left(TM\right)vìa\ge0\)
\(b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ < =>3\sqrt{\left(3a^2\right)^2}-6a^3\\ < =>3\left|3a^3\right|-6a^3\\ \)
Nếu \(a\ge0\) thì giá trị của biểu thức là:
\(3.3a^2-6a^2\\ =9a^3-6a^3\\ =3a^3\)
Nếu a<0 thì giá trị của biểu thức là:
\(3\left(-3a^3\right)-6a^3=-9a^3\\ =-6a^3=-15a^3\)
\(c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ =\left|a+3\right|+\left|a-3\right|\\ =a+3+a-3\\ =2a\)