Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{2015}}-\dfrac{1}{\sqrt{2016}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2016}}=\dfrac{\sqrt{2016}-1}{\sqrt{2016}}\)
=>|x-1|+|x-2|=2016
TH1: x<1
Pt sẽ là 1-x+2-x=2016
=>-2x+3=2016
=>-2x=2013
=>x=-2013/2(nhận)
TH2: 1<=x<2
Pt sẽ là x-1+2-x=2016
=>1=2016(loại)
TH3: x>=2
Pt sẽ là 2x-3=2016
=>2x=2019
=>x=2019/2(nhận)
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
=\(\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}\)
=\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
áp dụng vào biểu thức ta có\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
=\(1-\frac{1}{\sqrt{2016}}\)
đến đây cậu tự giải nốt nhé
\(\dfrac{\sqrt{x-2015}-1}{x-2015}+\dfrac{\sqrt{y-2016}-1}{y-2016}=\dfrac{1}{2}\)
Điều kiện \(\left\{{}\begin{matrix}x>2015\\y>2016\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x-2015}}-\dfrac{1}{x-2015}+\dfrac{1}{\sqrt{y-2016}}-\dfrac{1}{y-2016}=\dfrac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-2015}}=a>0\\\dfrac{1}{\sqrt{y-2016}}=b>0\end{matrix}\right.\) thì ta có:
\(a-a^2+b-b^2=\dfrac{1}{2}\)
\(\Leftrightarrow\left(2a^2-2a+\dfrac{1}{2}\right)+\left(2b^2-2b+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left(\sqrt{2}a-\dfrac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2}b-\dfrac{1}{\sqrt{2}}\right)^2=0\)
\(\Leftrightarrow a=b=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-2015}}=\dfrac{1}{4}\\\dfrac{1}{\sqrt{y-2016}}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2019\\y=2020\end{matrix}\right.\)
Với mọi n>0 ta có:\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng đẳng thức trên vào D ta được:
\(D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}=1-\frac{\sqrt{2016}}{2016}=\frac{2016-\sqrt{2016}}{2016}\)
\(\dfrac{1}{7}\sqrt{51}với\dfrac{1}{9}\sqrt{150}\)
<=> \(\dfrac{\sqrt{51}}{7}với\dfrac{\sqrt{150}}{9}\)
<=> \(9\sqrt{51}với7\sqrt{150}\)
<=> \(\sqrt{4131}với\sqrt{7350}\)
=> \(\sqrt{4131}< \sqrt{7350}\)
=> \(\dfrac{1}{7}\sqrt{51}< \dfrac{1}{9}\sqrt{150}\)
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2x-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}}\)
b. Khi \(x=2016-2\sqrt{2015}\Rightarrow A=\frac{2}{\sqrt{2016-2\sqrt{2015}}}\)
\(=\frac{2}{\sqrt{\left(\sqrt{2015}-1\right)^2}}=\frac{2}{\sqrt{2015}-1}\)
\(A=\sqrt[]{1+2015^2+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\sqrt[]{\left(1+2015\right)^2-2.2015+\dfrac{2015^2}{\left(2015+1\right)^2}}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\sqrt[]{\left(1+2015-\dfrac{2015}{2015+1}\right)^2}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\left|1+2015-\dfrac{2015}{2016}\right|+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=1+2015-\dfrac{2015}{2016}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=1+2015=2016\)