Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)
\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)
\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)
\(A=4+2\sqrt{3}+5\sqrt{3}-1\)
\(A=3+7\sqrt{3}\)
b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)
\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)
\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)
\(A=2\)
Phần b mình viết nhầm tên thành A, bn sửa thành B nhé
c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=\sqrt{3}-1-2-\sqrt{3}\)
\(C=-3\)
Bài 1
a, Với \(x=9\)thì \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{3}{3}+1=2\)
b, Để \(A=\frac{5}{2}\)thì \(\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{5}{2}< =>\frac{3}{\sqrt{x}}=\frac{3}{2}< =>x=4\)
Bài 2
a, \(B=\frac{\sqrt{x}-2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}\left(đk:x>0\right)\)
\(=1-\frac{2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}=\frac{x+5\sqrt{x}+2}{x+\sqrt{x}}-\frac{2}{\sqrt{x}}\)
\(=\frac{x\sqrt{x}+5x+2\sqrt{x}-2x-2\sqrt{x}}{x\sqrt{x}+x}=\frac{x\sqrt{x}+3x}{x\sqrt{x}+x}\)
\(=1+\frac{2x}{x\left(\sqrt{x}+1\right)}=1+\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(A=\frac{3+\sqrt{x}}{\sqrt{x}}\)Thay x = 9 ta có :
\(VT=\frac{3+\sqrt{9}}{\sqrt{9}}=\frac{3+3}{3}=2\)
Bài ra ta có : \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\Leftrightarrow\frac{3}{\sqrt{x}}+1=\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}}=\frac{3}{2}\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
a) \(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(A=\sqrt{\left(2+\sqrt{3}\right)\left(\sqrt{2+\sqrt{3}}+2\right)\left(-\sqrt{2+\sqrt{3}}+2\right)}\)
\(A=\sqrt{1}\)
\(A=1\)
b)\(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)
\(B=\frac{\sqrt{xy}}{\sqrt{xy}-y}x\sqrt{y}+\frac{\sqrt{x}}{\sqrt{xy}-y}y\sqrt{x}+\left(-\frac{\sqrt{y}}{\sqrt{xy}-x}\right)^2x\sqrt{y}+y\sqrt{x}\)
\(B=x\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{y}+y\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{x}+x\frac{\sqrt{x}}{\sqrt{xy}-x}\sqrt{y}-y\sqrt{x}\frac{\sqrt{y}}{\sqrt{xy}-y}\)
\(B=\frac{-x^{\frac{5}{2}}\sqrt{y}+\sqrt{x}.y^{\frac{5}{2}}}{\left(\sqrt{xy}-y\right)\left(\sqrt{xy}-x\right)}\)
\(B=\frac{\left(\sqrt{x}.y^{\frac{5}{2}}-x^{\frac{5}{2}}\sqrt{y}\right)\left(y+\sqrt{xy}\right)\left(x+\sqrt{xy}\right)}{\left(-y^2+xy\right)\left(-x^2+xy\right)}\)
c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)
\(C=14-6\sqrt{5}+\sqrt{6}-2\sqrt{5}\)
\(C=14-8\sqrt{5}+\sqrt{6}\)
\(C=\sqrt{14-8\sqrt{5}+\sqrt{6}}\)