\(A=\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

15 tháng 9 2017

a) A = \(\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)

A = \(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

A = \(\left(\frac{2}{1-x}\right):\left(\frac{2\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

A =  \(\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)

A = \(\frac{2}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)

A = \(\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)

A =  \(\frac{1-\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\)

A = \(\frac{1-\sqrt{x}+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\)

A = \(\frac{1}{\sqrt{x}-x}\)

b)  Ta tính \(\sqrt{x}=\sqrt{7+4\sqrt{3}}=2+\sqrt{3}\) .

Sau đó thế vào A, ta có \(A=\frac{1}{\sqrt{x}-x}=\frac{1}{2+\sqrt{3}-7-4\sqrt{3}}=\frac{1}{-5-3\sqrt{3}}=-\frac{1}{5+3\sqrt{3}}\)

25 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)

Vậy \(0\le x< 9\)thì \(Q< 1\)