Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(\dfrac{5^4}{5^2\cdot7^2}\right)^{15}:\left(\dfrac{5^6}{2\cdot7\cdot31}\right)^7\)
\(=\dfrac{5^{30}}{7^{30}}:\dfrac{5^{42}}{2^7\cdot7^7\cdot31^7}\)
\(=\dfrac{5^{30}}{7^{30}}\cdot\dfrac{2^7\cdot7^7\cdot31^7}{5^{42}}=\dfrac{2^7\cdot31^7}{7^{23}\cdot5^{12}}\)
b: \(=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{5^{29}\cdot2^8\cdot7^{48}}\)
\(=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1-7\cdot4\right)}{5^{29}\cdot2^8\cdot7^{48}}=5\cdot\left(-27\right)=-135\)
\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{43}}\)
\(A=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{43}}\)
\(A=\frac{5^{30}.7^{48}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{43}}=5.7^3.\left(1-7.2^2\right)=1715.\left(-27\right)=-46305\)
\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}\left(2^4\right)^2.7^{43}}=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{43}}=\frac{7^{48}.5^{30}.2^8\left(1-7.2^2\right)}{5^{29}.2^8.7^{43}}\)
=\(7^5.5.\left(-27\right)=-2268945\)
\(=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{3^2\cdot2^2\cdot5^2\cdot7^{48}}\)
\(=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1+7\cdot4\right)}{3^2\cdot2^2\cdot5^2\cdot7^{48}}=\dfrac{5^{28}\cdot2^6\cdot12}{3^2}=\dfrac{5^{28}\cdot2^8}{3}\)
\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)
\(A=\frac{7^{49}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
\(A=\frac{7^{48}.5^{30}.2^8\left(1-28\right)}{5^{29}.2^8.7^{48}}\)
\(A=5.\left(-27\right)\)
\(A=-135\)
Tìm x:
\(\dfrac{4-x}{6-x}\)=\(\dfrac{x-3}{x-8}\)\(\Rightarrow\)(4-x)(x-8)=(6-x)(x-3)
\(\Rightarrow\)12x-x2-32=9x-x2-18
\(\Rightarrow\)3x=14\(\Rightarrow\)x=\(\dfrac{14}{3}\).
\(\dfrac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
=\(\dfrac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
=\(\dfrac{7^{48}.5^{30}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{48}}\)
=5.(1-7.22) = 5.(1-28) = 5.(-27) = -135
a) S = 1.2 + 2.3 + 3.4 + ... + 99.100
S có thể được viết lại thành:
S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)
= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98
= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)
Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:
S = n(n+1)(2n+1)/6
Với n = 99, ta có:
S = 99.100.199/6 = 331650
Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:
S = n(n+1)/2
Với n = 98, ta có:
S = 98.99/2 = 4851
Do đó, S = 331650 - 4851 = 326799
b) B = 4924.12517.28−530.749.45529.162.748
B có thể được viết lại thành:
B = (4924.12517.28) / (530.749.45529.162.748)
B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)
B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529
B = 108 / 45529
c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101
C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101
C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)
C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)
C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)
d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018
D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^
\(\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
\(=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)
\(=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
\(=\frac{7^{48}.5^{30}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{48}}\)
\(=5.\left(1-7.4\right)\)
\(=5.\left(1-28\right)\)
\(=5.\left(-27\right)=-135\)
a, \(125^3:5^7=\left(5^3\right)^3:5^7=5^9:5^7=5^2\)
b, \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{4}{49}\right)^5:\left(\dfrac{8}{343}\right)^2\)
= \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2^2}{7^2}\right)^5:\left(\dfrac{2^3}{7^3}\right)^2\)
= \(\left(\dfrac{2}{7}\right)^{18}:\left[\left(\dfrac{2}{7}\right)^2\right]^5:\left[\left(\dfrac{2}{7}\right)^3\right]^2\)
=\(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2}{7}\right)^{10}:\left(\dfrac{2}{7}\right)^6\)
= \(\left(\dfrac{2}{7}\right)^{18-10-6}=\left(\dfrac{2}{7}\right)^2\)
c, \(3-\left(\dfrac{-7}{9}\right)^0+\left(\dfrac{1}{3}\right)^5.3^5\)
= 3 - 1 +\(\left[\left(\dfrac{1}{3}\right)^5.3^5\right]\)
= 2 + 1=3
d, \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(9.5\right)^{10}.5^{20}}{\left(25.3\right)^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}\)
= \(\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5\)