Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right).\left(\frac{2}{3}-\frac{3}{2}+12\right)\)
A=\(\frac{6}{5}\).\(\frac{67}{6}\)=\(\frac{67}{5}\)
Hok tốt
\(A=\frac{\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right)}{\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)}\)
\(A=\frac{\left(\frac{15}{10}-\frac{4}{10}+\frac{1}{10}\right)}{\left(\frac{18}{12}-\frac{8}{12}+\frac{1}{12}\right)}\)
\(A=\frac{\frac{6}{5}}{\frac{11}{12}}=\frac{6}{5}:\frac{11}{12}=\frac{6}{5}\times\frac{12}{11}\)
\(A=\frac{72}{55}\)
Trả lời
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)\) \(\left(a\ge0.a\ne1\right)\)
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{1}{\left(a+1\right)^2}-\frac{1}{\left(a-1\right).\left(a+1\right)}\right]\)
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{a-1-a-1}{\left(a+1\right)^2.\left(a-1\right)}\right]\)
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.0\)
\(B=\frac{1}{a+1}\)
Vậy \(B=\frac{1}{a+1}\)
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)ĐK\left(a\ge0;a\ne1\right)\)
\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}-\frac{a^2+1}{\left(a^2-1\right)\left(a^2+1\right)}\right)\)
\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1-a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}\right)\)
\(=\frac{1}{a+1}\)
Vậy \(B=\frac{1}{a+1}\)
BÀI 1
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}.\)
bài 2
a) \(\frac{1}{2}-\frac{1}{3}+\frac{1}{12}=\frac{6}{12}-\frac{4}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
b) \(\frac{9^9.27^4}{3^8.81^5}=\frac{\left(3^2\right)^9.\left(3^3\right)^4}{3^8.\left(3^4\right)^5}=\frac{3^{18}.3^{12}}{3^8.3^{20}}=\frac{3^{30}}{3^{28}}=3^2=9\)
Study well
Bài 1: \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}\)
Bài 2:
a)\(\frac{1}{2}-\frac{1}{3}+\frac{1}{12}=\frac{6}{12}-\frac{4}{12}+\frac{1}{12}=\frac{6-4+1}{12}=\frac{1}{4}\)
b)\(\frac{9^9.27^4}{3^8.81^5}=\frac{9^9.3^{12}}{3^8.9^{10}}=\frac{3^4}{9}=\frac{3^4}{3^2}=3^2=9\)
\(\text{ĐKXĐ: }x\ne1\)
\(M=\frac{a^2+2}{a^3-1}+\frac{a+1}{a^2+a+1}-\frac{1}{a-1}=\frac{a^2+2}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{a+1}{a^2+a+1}-\frac{1}{a-1}\)
\(=\frac{a^2+2}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+2+a^2-1-a^2-a-1}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{a^2-a}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{a.\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a}{a^2+a+1}\)
Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{50}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{50}}\)
\(\Rightarrow A=1-\frac{1}{2^{50}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}\)
\(A=\frac{2^{50}-1}{2^{50}}.\)