Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=31+32+33+34+....+399+3100+3101
3A=(1+31+32+33+34+....+399+3100)+3101-1
3A=A+3101-1
=> \(A=\frac{3^{101}-1}{2}\)
A=2100-299+298-297+.....+22-2
=>2A=2101-2100+299-298+.....+23-22
=>2A+A=2101-2100+299-298+.....+23-22+2100-299+298-297+....+22-2
=>3A=2201-2
=>A=\(\frac{2^{201}-2}{3}\)
B=3100-399+398-397+....+32-3+1
=>3B=3101-3100+399-398+...+33-32+3
=>3B+B=3101-3100+399-398+...+33-32+3+3100-399+398-397+....+32-3+1
=>4B=3101+1
=>B=\(\frac{3^{101}+1}{4}\)
Câu a : Đặt 2A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2
=> 2A - A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2 - ( 2^100 - 2^99 + 2^98 - 2^97 +...+ 2^2 - 2)
=> A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2 - 2^100 + 2^99 - 2^98 + 2^97 -...- 2^2 + 2
=> A= = 2^101 -2(2^100 + 2^98 + 2^96 +...+ 2^2) + 2(2^99 + 2^97 + 2^95 +...+ 2^3) +2
Câu b : Làm tương tự như trên
BẤM ĐÚNG CHO MÌNH NHA
\(A=1+3+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
Vậy \(A=\frac{3^{101}-1}{2}\)
_Chúc bạn học tốt_
A = 1 + 3 + 32 + 33 +34 +....+ 3100
\(\Rightarrow\)3A=3(1+3+3^2+3^3+...+3^100)
\(\Rightarrow\)3A= 3+3^2+3^3+3^4+....+3^101
\(\Rightarrow\)3A-A= 3^101-1
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
A = 3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+13100−399+398−397+...+32−3+1
3A = 3^{101}-3^{100}+3^{99}-3^{98}+...-3^2+33101−3100+399−398+...−32+3
3A + A = 3^{101}-3^{100}+3^{99}-3^{98}+....-3^2+3+3^{100}-3^{99}+3^{98}-...+3^2-3+13101−3100+399−398+....−32+3+3100−399+398−...+32−3+1
4A = 3^{101}+1$3101+1
=> A = 3^{101}+1}{4}3101+14
M = \(2^{100-}2^{99}+2^{98}-...+2^2-2\)
\(2M=2^{101}-2^{100}+2^{99}-2^{98}+2^{97}+...+2^3-2^2\)
\(2M+M=2^{101}-2\)
\(M=\frac{2^{101}-2}{3}\)
N=\(3^{100}-3^{^{ }99}+3^{98}-3^{97}+...+3^2-3+1\)
\(3N=3^{101}-3^{100}+3^{99}-3^{98}+3^{97}+...+3^3-3^2+3\)
3N+N= 4N = \(3^{101}+1\)
N=\(\frac{3^{101}+1}{4}\)
A= 12+22+32+42+.....+992+1002
A =1.(2-1)+2.(3-1)+3.(4-1)+....+99.(100-1)+100.(101-1)
=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100
=(1.2+2.3+3.4+...+99.100+100.101)-(1+2+3+...+100)
A= [1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99) ] /3 + [(100+1).100 /2]
( Ở đây là cái tổng ở trên nhân 3 nên cuối mới chia 3)
=[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+100.101.102-99.10.101]/3 + 5050
=100.101.102/3 + 5050
=348450
Đề chắc là A = 3 + 32 + ... + 3100
3A = 32 + 33 + ... + 3101
3A - A = ( 32 + 33 + ... + 3101 ) - ( 3 + 32 + ... + 3100 )
2A = 3101 - 3
A = 3101 - 3 / 2
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+3^{101}\)
\(\Rightarrow3A-A=3^{101}-3\)
\(\Rightarrow2A=3\left(3^{100}-1\right)\)
\(\Rightarrow A=3\left(3^{100}-1\right):2\)