Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\) \(=\frac{\left(a^4-2a^2+1\right)-a^2}{\left(a^4-a^3-a^2\right)+\left(a^3-a^2-a\right)+\left(a^2-a-1\right)}\)
\(=\frac{\left(a^2-1\right)^2-a^2}{a^2\left(a^2-a-1\right)+a\left(a^2-a-1\right)+\left(a^2-a-1\right)}\)
\(=\frac{\left(a^2-a-1\right)\left(a^2+a-1\right)}{\left(a^2-a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
\(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\)
Theo đề bài ta có :
Tử số : \(a^4-2a^2+1-a^2\)
\(=\left(a^2-1\right)^2-a^2\)
\(=\left(a^2-1+a\right)\left(a^2-1-a\right)\)
Mẫu số : \(a^4-\left(a^2+2a+1\right)\)
\(=a^4-\left(a+1\right)^2\)
\(=\left(a^2+a+1\right)\left(a^2-a-1\right)\)
Phân thức bằng \(\frac{a^2+a-1}{a^2+a+1}\)với điều kiện \(a^2-a-1\ne0\)