\(A=1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

\(A=1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)

\(=1-\dfrac{2\left(4x-1\right)-\left(1-2\sqrt{x}\right)-5\sqrt{x}\cdot\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)-\left(1-2\sqrt{x}\right)\cdot\left(4x-1\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{4x-4x\sqrt{x}-1+\sqrt{x}}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{4x\cdot\left(1-\sqrt{x}\right)-\left(1-\sqrt{x}\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{\left(4x-1\right)\cdot\left(1-\sqrt{x}\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{1-\sqrt{x}}{\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{-\left(\sqrt{x}-1\right)}{\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{-1}{\left(1-2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\left(4x+4\sqrt{x}+1\right)\)

\(=1+\dfrac{1}{1-4x}\cdot\left(4x+4\sqrt{x}+1\right)\)

\(=1+\dfrac{4x+4\sqrt{x}+1}{1-4x}\)

\(=\dfrac{1-4x+4x+4\sqrt{x}+1}{1-4x}\)

\(=\dfrac{2+4\sqrt{x}}{1-4x}\)

21 tháng 6 2017

kết quả chưa tối giản thế này mới đúng

\(\dfrac{2}{1-2\sqrt{x}}\)

a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)

\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)

\(=\dfrac{1}{x-\sqrt{3}}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)

\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)

\(=x-2\sqrt{x}+1\)

c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

2 tháng 8 2017

ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có \(A=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{x-\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{\sqrt{x}+2+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\frac{x-1-x+\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+3}=\frac{x+3}{\sqrt{x}+3}\)

28 tháng 6 2017

đề sai rồi bạn sửa lại đi rồi mình giúp

28 tháng 6 2017

sai ở đâu v bn

 

31 tháng 5 2017

ĐKXĐ: \(x\ge0,x\ne1\)

\(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)

= \(\dfrac{x+\sqrt{x}+1}{x+1}:\left(\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)

= \(\dfrac{\left(x+\sqrt{x}+1\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

= \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-1\)

= \(\dfrac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\dfrac{x+2}{\sqrt{x}-1}\)