Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
Ta có : \(x^2+8x-20=\left(x-2\right)\left(x+10\right)\)
\(\left|x-2\right|=x-2\Leftrightarrow x\ge0\)
\(\left|x-2\right|=-\left(x-2\right)\Leftrightarrow x\le0\)
Vì \(x\ge0\)suy ra : \(\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}=\frac{x}{x+10}\)
Vì \(x\le0\)suy ra : \(\frac{x\left[-\left(x-2\right)\right]}{\left(x-2\right)\left(x+10\right)}=\frac{-x}{x+10}\)
Bài làm
Ta có: A = x| x-2 | / x²+ 8x - 20
A = x| x - 2 | / x² - 2x + 10x - 20
A = x| x - 2 | / x( x - 2 ) + 10( x - 2 )
A = x| x - 2 | / ( x + 10 )( x - 2 )
Nếu x ≥ 2 => x - 2 ≥ 0 => |x - 2| <=> x - 2
Nên A = x( x - 2 )/( x +10 )( x - 2 ) = x/x + 10
Nếu x ≤ 2 => x - 2 ≤ 0 => | x - 2 | = -( x - 2 )
Nên A = x.[ -( x - 2 ) ]/ ( x + 10 )( x + 2 ) = -x/ x + 10
Vậy từ biểu thức trên, ta có thể rút gọn thành hai biểu thức mới là A = x/ x + 10 và A = -x/ x +10
Do mik lm bằng đt nên k vt đc phân số. Thông cảm
TH1: \(\left(x-2\right)< 0\)
\(\Rightarrow A=\frac{-x\left(x-2\right)}{x^2+8x-20}=\frac{-x\left(x-2\right)}{x^2-2x+10x-20}=\frac{-x\left(x-2\right)}{\left(x^2-2x\right)+\left(10x-20\right)}\)
\(A=\frac{-x\left(x-2\right)}{x\left(x-2\right)+10\left(x-2\right)}=\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}=\frac{-x}{x+10}\)
TH2: \(\left(x-2\right)>0\)
\(\Rightarrow A=\frac{x\left(x-2\right)}{x^2+8x-20}=\frac{x\left(x-2\right)}{x^2-2x+10x-20}=\frac{x\left(x-2\right)}{\left(x^2-2x\right)+\left(10x-20\right)}\)
\(A=\frac{x\left(x-2\right)}{x\left(x-2\right)+10\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}=\frac{x}{x+10}\)
HOK TOT
a = \(\frac{x\left(x-2\right)}{x^2+8x-20}=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}\)
th1 : x > 2
=> X> 2
=> a = \(\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}\frac{x}{x+10}\)
th2 : X < 2
a = \(\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}\frac{x}{x+10}\)
ăn cạc