K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

phân ra 2 th rồi giải típ

Bài 2:

a: \(A=\frac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\frac{4-a}{\sqrt{a}-2}\)

\(=\frac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)=0\)

b: \(B=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}:\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}\cdot\frac{1}{\left(\sqrt{x}-\sqrt{y}\right)^2}=\frac{x-\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)

Bài 1:

a: \(A=\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\frac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

b: \(B=\frac{x-1}{\sqrt{y}-1}\cdot\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\)

\(=\frac{\left(x-1\right)}{\sqrt{y}-1}\cdot\frac{\left|y-2\sqrt{y}+1\right|}{\left|\left(x-1\right)^2\right|}\)

\(=\left(x-1\right)\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\left(\sqrt{y}-1\right)}{x-1}\)