Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\sqrt{1+2\sqrt{2}+\sqrt{11+6\sqrt{2}}}=\sqrt{1+2\sqrt{2}+\sqrt{9+2.3\sqrt{2}+2}}=\sqrt{1+2\sqrt{2}+3+\sqrt{2}}=\sqrt{4+3\sqrt{2}}\)
\(b.\sqrt{10-2\sqrt{21}}+\sqrt{4+2\sqrt{3}}=\sqrt{7-2\sqrt{7}.\sqrt{3}+3}+\sqrt{3+2\sqrt{3}+1}=\sqrt{7}-\sqrt{3}+\sqrt{3}+1=\sqrt{7}+1\)
\(c.\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{1-\dfrac{\sqrt{3}}{2}}=\sqrt{\dfrac{3}{4}+2.\dfrac{\sqrt{3}}{2}.\dfrac{1}{2}+\dfrac{1}{4}}+\sqrt{\dfrac{3}{4}-2.\dfrac{\sqrt{3}}{2}.\dfrac{1}{2}+\dfrac{1}{4}}=\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}=\sqrt{3}\)
\(d.\sqrt{15+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}=\sqrt{9+2.3\sqrt{6}+6}-\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3+\sqrt{6}-3\sqrt{2}+\sqrt{3}=\sqrt{3}\left(\sqrt{3}+\sqrt{2}-\sqrt{6}+1\right)\)
b)\(\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\)
\(\Leftrightarrow\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)
\(\Leftrightarrow\sqrt{m-1}+1+\sqrt{m-1}-1\Leftrightarrow2\sqrt{m-1}\)
Câu 1 phá từng lớp ra :VD\(9+4\sqrt{2}\) =\((\sqrt{2}+2)^2\)
Câu 2:m+2\(\sqrt{m-1}\) =m-1+1+2\(\sqrt{m-1}\) =\((\sqrt{m-1} -1)^2 \)
4.a)\(x-2\sqrt{x}+3\)
\(=x-2\sqrt{x}+1+2\)
\(=\left(\sqrt{x}-1\right)^2+2\)
Vì \(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)
\(\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
b)Ta có:
\(x-4\sqrt{y}+13\ge0\)
\(\Leftrightarrow x-4\sqrt{y}\ge-13\)
Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)
Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)
c)Ta có:
\(2x-4\sqrt{y}+6\ge0\)
\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)
\(\Leftrightarrow x-2\sqrt{y}\ge-3\)
Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)
Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)
d)Ta có:
\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)
\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)
Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)
\(1.\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}=\sqrt{16-15}=1\)
\(2.\sqrt{6+2\sqrt{5}}.\sqrt{6-2\sqrt{5}}=\sqrt{36-20}=\sqrt{16}=4\)
\(3.\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\) \(4.\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}=\sqrt{3}+1-\sqrt{3}+1=2\)
mình làm mẫu 2 bài nhé 2 bài kia bạn làm tương tự
1)a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)
\(\sqrt{10-2\sqrt{21}}+\sqrt{7}=\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}+\sqrt{7}=\sqrt{7}+\sqrt{3}+\sqrt{7}=2\sqrt{7}+\sqrt{3}\)
2)a) \(\sqrt{12-6\sqrt{3}}-\sqrt{3}=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{3}=3-\sqrt{3}-\sqrt{3}=3-2\sqrt{3}\)
b) \(\sqrt{7+2\sqrt{6}}-\sqrt{3}=\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{3}=1+\sqrt{6}-\sqrt{3}\)
Bài 1.
1. \(\sqrt{-3x+6}\) có nghĩa khi \(-3x+6\ge0\Leftrightarrow-3x\ge-6\Rightarrow x\le2\)
2.
\( a){\left( {\sqrt 7 - \sqrt 5 } \right)^2} + 2\sqrt {35} = 7 - 2\sqrt {35} + 5 + 2\sqrt {35} = 12\\ b)3\sqrt 8 - \sqrt {50} - \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} = 6\sqrt 2 - 5\sqrt 2 - \sqrt 2 + 1 = 1 \)
Bài 2.
\( M = \dfrac{{\sqrt a + 3}}{{\sqrt a - 2}} - \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} + \dfrac{{4\sqrt a - 4}}{{4 - a}}\\ M = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a + 3} \right) - \left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right) - \left( {4\sqrt a - 4} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\sqrt a + 8}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\left( {\sqrt a + 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{4}{{\sqrt a - 2}} \)
Bài 3.
1.
\( a)\sqrt {{{313}^2} - {{312}^2}} + \sqrt {{{17}^2} - {8^2}} = \sqrt {\left( {313 - 312} \right)\left( {313 + 312} \right)} + \sqrt {\left( {17 - 8} \right)\left( {17 + 8} \right)} \\ = \sqrt {625} + \sqrt {9.25} = 25 + 3.5 = 25 + 15 = 40\\ b)\dfrac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{1 + \sqrt 2 }} = \sqrt 2 \)
2. \(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(1;1\right)\)
3.
\(
\sqrt {9\left( {x - 1} \right)} = 21\\
\Leftrightarrow 3\sqrt {x - 1} = 21\\
\Leftrightarrow \sqrt {x - 1} = 7\\
\Leftrightarrow x - 1 = 49\\
\Leftrightarrow x = 50
\)
Thử lại $x=50$ là nghiệm
Bài 2:
a)
\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=\sqrt{\frac{18-2\sqrt{17}}{2}}-\sqrt{\frac{18+2\sqrt{17}}{2}}\)
\(=\sqrt{\frac{17+1-2\sqrt{17}}{2}}-\sqrt{\frac{17+1+2\sqrt{17}}{2}}=\sqrt{\frac{(\sqrt{17}-1)^2}{2}}-\sqrt{\frac{(\sqrt{17}+1)^2}{2}}\)
\(=\frac{\sqrt{17}-1}{\sqrt{2}}-\frac{\sqrt{17}+1}{\sqrt{2}}=-\sqrt{2}\)
b)
\(2\sqrt{2}(\sqrt{3}-2)+(1+2\sqrt{2})^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+(1+4\sqrt{2}+8)-2\sqrt{6}\)
\(=1+8=9\)
Bài 1:
a)
\(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{6}+4}{2(\sqrt{3}+\sqrt{7})}=\frac{1}{2}.\frac{(\sqrt{6}+4)(\sqrt{7}-\sqrt{3})}{(\sqrt{3}+\sqrt{7})(\sqrt{7}-\sqrt{3})}\)
\(=\frac{(4+\sqrt{6})(\sqrt{7}-\sqrt{3})}{8}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{16}-\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+1)(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
\(\text{a) }\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{8+1+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\\ =\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\\ =\sqrt{13+30\sqrt{2}+30}\\ =\sqrt{43+30\sqrt{2}}\\ =\sqrt{25+18+30\sqrt{2}}\\ =\sqrt{\left(5+\sqrt{18}\right)^2}\\ =5+3\sqrt{2}\)
\(\text{b) }\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\\ =\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\\ =\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\\ =\sqrt{m-1}+1+\sqrt{m-1}-1\\ =2\sqrt{m-1}\)