Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{12x-8\sqrt{x}}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{3-\sqrt{x}}=\dfrac{4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)
ĐKXĐ: x>0, x≠0;x≠4
\(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)=\left(\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x}}{\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}=\dfrac{4x}{\sqrt{x}-3}\)
a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)
Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)
\(2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}=\left[{}\begin{matrix}2x-1-1=2x-2khix-5>0\\2x-1+1=2xkhix-5< 0\end{matrix}\right.\)
b) \(\dfrac{\sqrt{x^2-4x+4}}{x^2-2}=\dfrac{\sqrt{\left(x-2\right)^2}}{x^2-2}=\left[{}\begin{matrix}\dfrac{x-2}{x^2-2}khix-2\ge0\\\dfrac{2-x}{x^2-2}khix-2\le0\end{matrix}\right.\)
a, Với \(x>0;x\ne4;x\ne9\)
\(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{3-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}=\frac{4x}{3-\sqrt{x}}\)
b, Ta có : A = -2 hay
\(\frac{4x}{3-\sqrt{x}}=-2\Rightarrow4x=-6+2\sqrt{x}\)
\(\Leftrightarrow4x+6-2\sqrt{x}=0\Leftrightarrow2\left(2x+3-\sqrt{x}\right)=0\)
\(\Leftrightarrow2x+3-\sqrt{x}=0\Leftrightarrow\sqrt{x}=2x+3\)
bình phương 2 vế ta có :
\(x=\left(2x+3\right)^2=4x^2+12x+9\)
\(\Leftrightarrow-4x^2-11x-9=0\)giải delta ta thu được : \(x=-\frac{11\pm\sqrt{23}i}{8}\)
\(a,A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
\(=\frac{4\sqrt{x}.\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2.\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)
\(=\frac{\left(4x+8\sqrt{x}\right)\left(\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)
\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)
\(=\frac{4x}{\sqrt{x}-3}\)
Bài 1:
a: \(A=\dfrac{\sqrt{x}+2}{2\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4+x-4\sqrt{x}+4}{2\left(x-4\right)}\)
\(=\dfrac{2x+8}{2\left(x-4\right)}=\dfrac{x+4}{x-4}\)
b: Để A=8 thì x+4=8(x-4)
=>x+4=8x-32
=>-7x=-36
hay x=36/7(nhận)
Bài 1:
a: \(A=\left|2a-1\right|-2a\)
TH1: a>=1/2
A=2a-1-2a=-1
TH2: a<1/2
A=1-2a-2a=1-4a
b: \(B=x-2y-\left|x-2y\right|\)
TH1: x>=2y
A=x-2y-x+2y=0
TH2: x<2y
A=x-2y+x-2y=2x-4y
c: \(=x^2+\left|x^2-4\right|\)
TH1: x>=2 hoặc x<=-2
\(A=x^2+x^2-4=2x^2-4\)
TH2: -2<x<2
\(A=x^2+4-x^2=4\)
d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)
TH1: x>5
\(D=2x-1-1=2x-2\)
TH2: x<5
D=2x-1+1=2x
a: \(P=\dfrac{2x-18-2x-6\sqrt{x}+5\sqrt{x}+20}{x-9}:\dfrac{\sqrt{x}+3-5}{\sqrt{x}+3}\)
\(=\dfrac{-\sqrt{x}+2}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}-2}=\dfrac{-1}{\sqrt{x}-3}\)
b: Để P<-1/2 thì P+1/2<0
=>\(\dfrac{-1}{\sqrt{x}-3}+\dfrac{1}{2}< 0\)
=>\(\dfrac{-2+\sqrt{x}-3}{2\left(\sqrt{x}-3\right)}< 0\)
=>\(\dfrac{\sqrt{x}-5}{2\left(\sqrt{x}-3\right)}< 0\)
=>3<căn x<5
=>9<x<25
c: \(Q=\dfrac{-1}{\sqrt{x}-3}\cdot\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)=-x+5\sqrt{x}\)
\(=-\left(x-5\sqrt{x}+\dfrac{25}{4}-\dfrac{25}{4}\right)=-\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{25}{4}< =\dfrac{25}{4}\)
Dấu = xảy ra khi x=25/4
điều kiện xác định : \(x\ge0;x\ne\dfrac{1}{4}\)
ta có : \(A=\left(\dfrac{1}{2\sqrt{x}-1}-\dfrac{2\sqrt{x}}{4x-1}\right):\dfrac{1}{8x-4\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{1}{2\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right):\dfrac{1}{4\sqrt{x}\left(2\sqrt{x}-1\right)}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}+1-2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right).\dfrac{4\sqrt{x}\left(2\sqrt{x}-1\right)}{1}\)
\(\Leftrightarrow A=\dfrac{4\sqrt{x}}{2\sqrt{x}+1}\)