\(\dfrac{6^9.2^{10}+12^{10}}{2^{19}.27^3+15.4^9.9^4}\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{2^{19}\cdot3^9+2^{20}\cdot3^{10}}{2^{19}\cdot3^9+2^{18}\cdot3^9\cdot5}=\dfrac{2^{19}\cdot3^9\left(1+2\cdot3\right)}{2^{18}\cdot3^9\left(2+5\right)}=2\)

 

10 tháng 1 2018

Ta có:

\(\dfrac{x^{24}+x^{20}+x^{16}+x^{12}+...+x^4+1}{x^{26}+x^{24}+x^{22}+x^{20}+...+x^2+1}\)

Xét \(M=x^{24}+x^{20}+x^{16}+x^{12}+...+x^4+1\)

\(\Rightarrow x^4M=x^{28}+x^{24}+x^{20}+x^{16}+...+x^8+x^4\)

\(\Rightarrow x^4M-M=\left(x^{28}+x^{24}+x^{20}+...+x^8+x^4\right)-\left(x^{24}+x^{20}+x^{16}+...+x^4+1\right)\)

\(\Rightarrow\left(x^4-1\right)M=x^{28}-1\)

\(\Rightarrow M=\dfrac{x^{28}-1}{x^4-1}\)

Xét \(N=x^{26}+x^{24}+x^{22}+x^{20}+...+x^2+1\)

\(\Rightarrow x^2N=x^{28}+x^{26}+x^{24}+x^{20}+...+x^4+x^2\)

\(\Rightarrow x^2N-N=\left(x^{28}+x^{26}+x^{24}+...+x^4+x^2\right)-\left(x^{26}+x^{24}+x^{22}+...+x^2+1_{ }\right)\)

\(\Rightarrow\left(x^2-1\right)N=x^{28}-1\)

\(\Rightarrow N=\dfrac{x^{28}-1}{x^2-1}\)

Ta có:

\(\dfrac{x^{24}+x^{20}+x^{16}+x^{12}+...+x^4+1}{x^{26}+x^{24}+x^{22}+x^{20}+...+x^2+1}\)

\(=\dfrac{M}{N}=\dfrac{\dfrac{x^{28}-1}{x^4-1}}{\dfrac{x^{28}-1}{x^2-1}}\)

\(=\dfrac{x^{28}-1}{x^4-1}.\dfrac{x^2-1}{x^{28}-1}=\dfrac{x^2-1}{x^4-1}\)

\(=\dfrac{x^2-1}{\left(x^2-1\right)\left(x^2+1\right)}=\dfrac{1}{x^2+1}\)

Chúc bạn học tốt!

10 tháng 1 2018

khiếp, dài tek

Cái đề rõ ngắn giải thì rõ dài

~ Nể sự kiên nhẫn của bà thiệt = = ~

3 tháng 7 2018

\(a.C=\dfrac{x^4+x^8+x^{12}+x^{16}+x^{20}+x^{24}+x^{28}+1}{x^3+x^7+x^{11}+x^{15}+x^{19}+x^{23}+x^{27}+x^{31}}=\dfrac{x^{28}+x^{24}+...+x^8+x^4+1}{x^3\left(x^{28}+x^{24}+...+x^8+x^4+1\right)}=\dfrac{1}{x^3}\) Tại x = 2015 thì : \(C=\dfrac{1}{x^3}=\dfrac{1}{2015^3}\)

\(b.F=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{2011.2012.2013.2014}\)

\(3F=\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+\dfrac{3}{3.4.5.6}+...+\dfrac{3}{2011.2012.2013.2014}\)

\(3F=\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+\dfrac{1}{3.4.5}-\dfrac{1}{4.5.6}+...+\dfrac{1}{2011.2012.2013}-\dfrac{1}{2012.2013.2014}\)

\(3F=\dfrac{1}{1.2.3}-\dfrac{1}{2012.2013.2014}\)

Tới đây dễ rồi , bạn tự tính nốt .

3 tháng 7 2018

Vì làm vậy để triệt tiêu dần mà ( dang bài kiểu ... này thường là phải triệt tiêu ) Triệu Tử Dương

13 tháng 2 2019

Bài 17)

(x - 2)^4 + (x - 6)^4 = 82
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5

13 tháng 2 2019

Bài 18: Phương trình đã cho được viết thành: $${({x^2} + 6x + 10)^2} + (x + 3)\left[ {3\left( {{x^2} + 6x + 10} \right) + 2\left( {x + 3} \right)} \right] = 0$$
Đặt $u = {x^2} + 6x + 10 > 0,v = x + 3$, suy ra:
$${u^2} + v\left( {3u + 2v} \right) = 0 \Leftrightarrow \left( {u + v} \right)\left( {u + 2v} \right) = 0 \Leftrightarrow \left[ \begin{gathered}
u + v = 0 \\
u + 2v = 0 \\
\end{gathered} \right.$$
$$ \Leftrightarrow \left[ \begin{gathered}
{x^2} + 6x + 10 + x + 3 = 0 \\
{x^2} + 6x + 10 + 2\left( {x + 3} \right) = 0 \\
\end{gathered} \right. \Leftrightarrow \left[ \begin{gathered}
{x^2} + 7x + 13 = 0 \\
{x^2} + 8x + 16 = 0 \\
\end{gathered} \right. \Leftrightarrow x = - 4$$

5 tháng 12 2017

\(\frac{x^{10}-x^8-x^7+x^6+x^6+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}=\frac{(x^{10}-x^8+x^6)-(x^7-x^5+x^3)+(x^4-x^2+1)}{ (x^{30}+x^{18}+x^{24})+(x^{12}+x^6+1)} \)

=\(\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+x^6+1)(x^{18}+1 )}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+2x^6+1-x^6) (x^6+1)(x^{12}-x^6+1)}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{ (x^6-x^3+1)(x^6+x^3+1)(x^2+1)(x^4-x^2+1)(x^12-x^6+1 )} \)

=\(\frac{1}{(x^6+x^2+1)(x^2+1)(x^{12}-x^6+1)}\)

8 tháng 2 2018

h.

\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1-2=\dfrac{1-x}{2003}+1+1-\dfrac{x}{2004}-2\)

\(\Leftrightarrow\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

Vì: \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\)

Suy ra: 2004 - x = 0

Vậy x = 2004

8 tháng 2 2018

\(a,\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)

\(\Leftrightarrow\dfrac{x-23}{24}+\dfrac{x-23}{25}-\dfrac{x-23}{26}-\dfrac{x-23}{27}=0\)

\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)

\(\Leftrightarrow x-23=0\) ( vì \(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\) )

\(\Leftrightarrow x=23\)

Vậy pt có tập nghiệm S = { 23 }

\(b,\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)

\(\Leftrightarrow\dfrac{x+2+98}{98}+\dfrac{x+3+97}{97}-\dfrac{x+4+96}{96}-\dfrac{x+5+95}{95}=0\)

\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy pt có tập nghiệm S = { 100 }

\(c,\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)

\(\Leftrightarrow\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)

\(\Leftrightarrow\dfrac{x+1+2004}{2004}+\dfrac{x+2+2003}{2003}-\dfrac{x+3+2002}{2002}-\dfrac{x+4+2001}{2001}=0\)

\(\Leftrightarrow\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}-\dfrac{x+2005}{2002}-\dfrac{x+2005}{2001}=0\)

\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

Vậy pt có tập nghiệm S = { 2005 }

\(d,\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

\(\Leftrightarrow\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}+\dfrac{205-x+95}{95}=0\)

\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

\(\Leftrightarrow300-x=0\)

\(\Leftrightarrow x=300\)

Vậy pt có tập nghiệm S = { 300 }

\(e,\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)

\(\Leftrightarrow\dfrac{x-45}{55}-1+\dfrac{x-47}{53}-1=\dfrac{x-55}{45}-1+\dfrac{x-53}{47}-1\)

\(\Leftrightarrow\dfrac{x-45-55}{55}+\dfrac{x-47-53}{53}-\dfrac{x-55-45}{45}-\dfrac{x-53-47}{47}=0\)

\(\Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\right)=0\)

\(\Leftrightarrow x-100=0\)

\(\Leftrightarrow x=100\)

Vậy pt có tập nghiệm S = { 100 }

\(f,\dfrac{x+1}{9}+\dfrac{x+2}{8}=\dfrac{x+3}{7}+\dfrac{x+4}{6}\)

\(\Leftrightarrow\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)

\(\Leftrightarrow\dfrac{x+10}{9}+\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{6}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{7}-\dfrac{1}{6}\right)=0\)

\(\Leftrightarrow x+10=0\)

\(\Leftrightarrow x=-10\)

Vậy pt có tập nghiệm S = { 10 }

\(h,\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}=\dfrac{1-x}{2003}+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2-x+2002}{2002}-\dfrac{1-x+2003}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

\(\Leftrightarrow2004-x=0\)

\(\Leftrightarrow x=2004\)

Vậy pt có tập nghiệm S = { 2004 }

\(g,\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)

\(\Leftrightarrow\dfrac{x+2}{98}+1+\dfrac{x+4}{96}+1=\dfrac{x+6}{94}+1+\dfrac{x+8}{92}+1\)

\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{96}-\dfrac{x+100}{94}-\dfrac{x+100}{92}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy pt có tập nghiệm S = { -100 }

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

24: 

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)

\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2

25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)

\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)

\(\Leftrightarrow x+5=0\)

hay x=-5