Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hướng dẫn mỗi bài 1 phần
Bài 1:
\(A=\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)\)
\(A=\frac{7}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{7}{2}.\left(1-\frac{1}{51}\right)\)
\(A=\frac{7}{2}.\frac{50}{51}\)
\(A=\frac{175}{51}\)
Bài 2:
a) Để A nguyên\(\Leftrightarrow3n-5⋮n+4\)
\(\Leftrightarrow3n+12-17⋮n+4\)
\(\Leftrightarrow3.\left(n+4\right)-17⋮n+4\)
mà \(3.\left(n+4\right)⋮n+4\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Lập bảng rùi tìm x
a/ 7*25-49/7*24+21
=( 7*25 ) - ( 49/7 ) * ( 24+21)
= 175 - 7 * 45
= 175 - ( 7*45 )
=175 - 315
= -140
mk k bít đúng k
a: \(A=\dfrac{7}{1\cdot3}+\dfrac{7}{3\cdot5}+...+\dfrac{7}{49\cdot51}\)
\(=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{49\cdot51}\right)\)
\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=\dfrac{7}{2}\left(1-\dfrac{1}{51}\right)=\dfrac{7}{2}\cdot\dfrac{50}{51}=\dfrac{175}{51}\)
b: \(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(=\dfrac{5}{28}+\dfrac{5}{70}+...+\dfrac{5}{700}\)
\(=\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot10}+...+\dfrac{5}{25\cdot28}\)
\(=\dfrac{5}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{25\cdot28}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}\cdot\dfrac{6}{28}=\dfrac{5}{3}\cdot\dfrac{3}{14}=\dfrac{5}{14}\)